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of a molecule trapped in a 3D crystal. . Theoretical considerations
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The stochastic classical trajectory method is developed for the interpretation of the
orientational relaxation of a diatomic molecule trapped in a rare gas matrix. The primary
system formed by the molecule and four neighboring atoms is described as a 2D effective
dynamical system, while the bath formed by the remaining degrees of freedom has the spatial
(3D) dimension. Special emphasis is devoted to the determination of the viscous terms
(connected to the molecule rotation and translation and to the four atoms vibrations) which
are responsible for the various channels of energy dissipation in the bath. A Monte Carlo
numerical procedure is applied in paper II to the dynamics of CO and CH,;F molecules trapped

in an argon crystal.

I. INTRODUCTION

Phase and energy relaxations of impurity molecules
trapped in solids have become subjects of much experimen-
tal'"? and theoretical'®-'® work in the last decade. Electronic
to vibrational energy transfers and vibrational energy relax-
ations have been extensively considered from an experimen-
tal point of view, especially for diatomic molecules such as
hydrogenated molecules®’ (HCl, NH, OH) or as molecules
with relatively large moments of inertia*=® (CO, N,,...). The
theoretical approach for the description of the vibrational
relaxation mechanism rests, in the lack of migration pro-
cesses, on the general theory of multiphonon processes' >3
less or more assisted by local modes'>'#!-1® such as the
rotational or translational modes connected to the motions
of the impurity in the lattice.

Most of these theories are quantum interpretations of
the vibrational and rotational relaxations of diatomic, and
more recently, of polyatomic molecules. According to the
degree of description of the physical system, the proposed
models can explain, with various success, the measured re-
laxation rates, but the most realistic models require very te-
dious calculations which have prevented a systematic analy-
sis for various molecules.

Beside these quantum methods, classical approaches
have been studied either through the molecular dynamics
simulation’® or through the stochastic trajectory formal-
ism.2%?! Given the increasing complexity of the dynamical
equations, the applications of these approaches have been
limited to 1D models. Indeed, even if, in the stochastic tra-
jectory method, the 3D specificity of the crystal is intro-
duced, the system formed by the molecule and the nearest
neighbor matrix atoms is assumed to be monodimensional.
Moreover, the interactions between the particles forming the
system and the bath have generally very simplified forms.

2 To whom correspondence should be addressed.
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Therefore, a direct comparison with experiments is only
qualitative.

A similar approach, based on the elaboration of general-
ized Langevin equations describing the time evolution of a
limited number of motions connected to the molecule and to
its closest surrounding, is described in this paper. In contrast
with previous papers, the harmonic description of the var-
ious motions is not considered as a basic hypothesis; but the
adequacy of its use in some of the equations of motion is
discussed by introducing the distorted matrix equilibrium
configuration, the distortion being due to the inclusion of the
diatomic impurity.

Here, the physical system is a diatomic molecule under-
going orientational motions in the close neighborhood of a
given symmetry plane in a rare gas matrix. The molecular
axis can in fact undergo small magnitude oscillations outside
the plane, and the vibrations of the centers of mass of the
molecule and of the matrix atoms are typically 3D motions.

The stochastic classical trajectory method is based on
the assumption that the molecule interacts directly with a
limited number of neighboring crystal atoms. For the fcc
crystal symmetry, the number of neighbors is equal to 12. In
fact, since the molecule nearly rotates in a given plane, the
four nearest-neighbor atoms located in this plane play a sin-
gular role regarding the coupled dynamics of the molecule
and of the matrix. Therefore, the motions of the primary
system will be assumed to be constituted by the in-plane
motions of the molecule and of the four nearest-neighbor
atoms, and the remaining degrees of freedom will form the
bath.

Such a model seems to give a convenient schematization
of the motions of relatively heavy diatomic molecules such
as CO or N, trapped in an argon crystal.?? It can also be
applied® to prolate symmetric tops such as CH,F which, in
first approximation, can be viewed as a diatomic (CH;)-F
rotor in the rare gas matrices.

In Sec. II, one presents the gross equations of motions
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for the diatomic embedded in the lattice, using a pairwise
potential to describe the molecule-matrix and matrix atom—
matrix atom interaction. Section III is devoted to the trans-
formation of these equations into generalized Langevin
equations for the primary system, and Sec. IV defines the
various damping terms and forces occurring in the stochas-
tic trajectory approach.

In a second paper (II), the computational procedure
involved in the solutions of the Langevin equations is devel-
oped and applied to the diatomic molecule C-O and to the
idealized molecule (CH,)-F.

il. THE MODEL

The diatomic molecule trapped in a rare gas matrix is
constrained to move and rotate in a given plane of the lattice,
for instance the (100) plane of a cubic close-packed argon
cystal. A limited number of degrees of freedom are required
to study the coupled dynamics of the rotation & and of the
vibration of the center of mass of the molecule with instanta-
neous position r,, and the vibrations of the centers of mass of
the four nearest-neighbor (NN) matrix atoms with instanta-
neous locations r; (j= 1,4). All these motions proceed in
the plane. The other degrees of freedom are connected to the
remaining motions not considered before, and they are as-
sumed to pertain to the bath. This is the case for the eight
NN atoms of the molecule, which do not belong to the mole-
cule plane and for all the other matrix atoms which undergo
3D motions. The primary system, formed by the molecule
and the four in-plane atoms, thus appears as an effective 2D
dynamical system embedded in a 3D statical and dynamical
bath.

Figure 1 displays the instantaneous configurations of
the molecule and of the matrix atoms which are decomposed
as follows:

r,=R,+d,+u,; i=0jk (nH

where R, d;, and u; characterize the perfect crystal loca-
tion, the lattice distortion, and the dynamics with respect to
R; + d, of the ith atom, respectively (R,=0).

The classical equations of motion connected to the rota-
tion~translation (6,r,) of the molecule and to the translation
of the j atoms (r;,j=1,..,4) and of the bath atoms
(k =5,...,N) are then solved from the expression of the La-
grangian .¢ defined as

N
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FIG. 1. Geometry of the physical system. The plane formed with atoms
J = 1,2,3,4 is the rotational plane of the molecule AB. The atoms j and the
molecule are the primary system. Atoms k belonging or not to the plane are
bath atoms.

potential energy v characterizes the pairwise interactions
between matrix atoms, disregarding the guest molecule, and
V, is connected to the molecule-matrix interactions. The
energy v is separated into three contributions, depending on
the relative location of the atoms with respect to the mole-
cule site, as

4 N

U(rpy.ty) = 2 *up(rr) + 2 * Ve
MP=1 kk'=5
4 N
+ 2 2 vjks (3)
Je= k=3

where the asterisk means that the sums are over j/ >/ or
k' > k. In asimilar way, the other potential termin Eq. (2) is
decomposed into

N 4 N
2 V= _21 V,(0xor;) + kzs Vi (Oxor,). 4)
ji= =

i=1

A simplifying assumption is then introduced by considering
harmonic vibrations of the k atoms around their distorted
equilibrium configurations (R, + d, ). A contracted nota-
tion is used to define instantaneous positions of the atoms as

D*=(;R, +4,),
D%= (ro.6;R, +4dy), &)
Dkk'E(Rk + dk:Rk' +d;.),

and the total interaction energy can be written as a Taylor
series expansion in terms of u,, after straightforward mani-
pulations, as

ﬂz vy (0,1 ) + ; vy (D ) +7; Vi (D7) + ; Vi (D%) + ; V}(ro’e’ri)]
+ Z v“k[z vy (D *y + Z Vi (D Yy + V(D Ok)]“k
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The equations of motions connected to the molecule, to the j
atoms, and to the k atoms are then given by

18 =F,(u,,00,) — ; Vo [V, Ve (D) [us,

Mafio = Fo(0,0,8) = 3 Vo, [ Vo, V3 (D %) Jues

Mii; =F, (u,,0,0;) — ; Vo [V, 00 (D 7,y Jus N
Mii, =F, (u,,0,0,) — ; V., Vo, Vi (D 50y

N
_ [v,,kv,,k V(D% + 3V, V.0, (Di")]uk.

i=1

The forces F are, respectively, expressed as

Fo= =2 Vo[V, (0] —;Vo[Vk(D"")],
j
Fo = _zvﬂo[Vj(“o’o;“j)] —EV“O[Vk(DOk)],
s k
"= v“"[V"(“"’e’“f) + 3o () + Fuu (D f")],

N
F, = ——V,,k[Vk(Dm‘) + 3 v,.k(D"")]. (8)
i=1

The brackets in Eqs. (7) and (8) mean that the gradient acts
on the functional inside these brackets. This functional is the
force experienced by each k atom located at its static equilib-
rium configuration when the molecule or the j atoms are
themselves at given instantaneous positions.

The harmonic approximation is not required for the
molecule and the j atom motions. Moreover, in contrast to
the models developed in previous papers, the forces F,, F,
and F; contain not only a contribution which depends on the
instantaneous position of the primary system, but a/so on the
static positions of all the k atoms. This term acts to renormal-
ize the forces viewed by the dynamical system and due to the
bath.

lil. GENERALIZED LANGEVIN EQUATIONS OF MOTION

The resolution of the equations of motion requires to
make additional assumptions. In Eq. (7), the force con-
stants and the force F, (but not the other forces Fy, Fy, F;)
are expanded in terms of u,, 6, u;, retaining the linear expan-
sion only. This means that the relaxation terms in Eqs. (7)
are considered within the harmonic approximation while the
forces on the molecule and on the j atoms are rigorously
included. This assumption can still be interpreted by consid-
ering that the bath “sees” a harmonic primary system from
the point of view of relaxational terms, but a general system
regarding the forces. To ensure the convergence of this ex-
pansion, u, and u; are the instantaneous displacements of
the molecule and the jth atom with respect to the distorted
equilibrium configurations R, + d, and R; 4 d;. Moreover,
the orientational coordinate can take any value in the range
[0, « [ with the 27 periodicity. A convergence criterion for
@is not possible, except when one makes a partition of the 2D
space viewed by the rotating molecule. The C, symmetry of
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FIG. 2. Rotational motion of the diatomic molecule in the parts ¥ = 1 and
¥ == 2 and distorted configurations of the j atoms of the primary system (& is
referred to the Z axis).

the lattice in the rotation plane (100) is therefore used to
make a partition of the interval [0,2#] into four equal angu-
lar parts [(#/4), (37/4)], [(37/4), (57/4)]--- (Fig. 2).
For each part, there is an orientational equilibrium configu-
ration for the molecule for 8 = (7/2), m,.... If 8} labels
these four configurations (¥ = 1,...,4), the convergence of
the previous expansion around 8} (8' = 6 — @}) is then, at
least partially, recovered when the molecular axis is located
in the yth part of the space. Since 8} corresponds to an
orientational equilibrium configuration for the molecule, the
force F;, acting on the k th atom vanishes when (u, u,) =0
and 6 =67.

The equation of motion of the & th atom can be written,
in a condensed notation, for the yth orientational well, as

N 4
iy = — ) Regow —jgl Hyw, — Jpouo— 0,60°,  (9)

k'=35
where u are general 3D vectors; R, H, and J are second-rank
tensors with dimensions of the square of a pulsation, and Q is
a first-rank tensor. These tensors are expressed, for the k th
atom, as

1 .
Rkk’ =A—{'vllkvllk'[vkk'(D(I;k )(1 _akk')

N
FVeDEI + 3 0 DI |,

i=1

1 )
Hy =290, 0 (D &, (10)

1
T =22V Vi (D3,

i
O »”
where, now D, means that the potential force constants are
calculated for the distorted configuration of the matrix and
of the molecule. The equations of motion for all k atoms can
then be expressed in a matricial form, with the matrix ele-
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ments given by Egs. (10):
i= —ﬁ-u—zflj°uj—3-uo—6-0'. 1y
J

u is a column matrix with N — 5 vector elements defined by
Eq. (9); Risa square matrix of rank (N — 5)% and H,J,and
6 are column matrices with the dimension N — 5 such that
the product 4-b (4 stands for H;, J, and Q and b for u;, u,,
and ') is given as

A; b
45 b

Ab=|"° (11)
Ay b

The usual Laplace transform of Eq. (11) allows us to
integrate the equation of motion for the bath atoms as

u(?) =S() + B(r)[z H;u, (0) + Ju,(0) + 6-0'(0)]
J
— B(0) [z Hu, (1) + Jug (1) + 6-0'(:)]
J
+f dt'B(t—t')[Zﬁj-ﬂj(t’)
0 J

+ Jeig(2') + 6-9'(r'>]. (12)
The random matrix S(¢):
S(1) = O(2)u(0) + O(r)-u(0) (13)

and the kernel in the friction term
B() = f O(r)dr, B(0) =8(z=0) (14)

are both expressed in terms of the resolvant function ©(¢)
with Laplace transform given by*>2!

0(2) = [21y_s» + R] . (15)

The formal inverse Laplace transform of @(z) can be
written as

() = (sin RV2)R™/2 (16)
and the corresponding B(¢), after integration, as
B(#) = (cos R'*)R~1. (17)

1.y _ 5, is the unit matrix with rank (¥ — 5)%>and zand ¢ are
reciprocal variables. The equations connected to the other
motions are then, using the same notations,

iiy=Mg '[F,— MITu(t)],
6=I""[F, —MQ™u(], (18)
i, =M ~'[F, — MHMu(1)],

where the index 7" means the transposed matrix.

To proceed further, a simplification in Eqgs. (12) and
(18) is introduced by assuming that the friction forces
between different motions 8, u,, w;, and u; are negligible.
This means that we disregard the influence, on the dynamics
of the system formed by the molecule and the four j atoms, of
the modification of the bath motions due to the interactions
with the system.

Equations (18), finally, can be written as generalized

Langevin equations:
iig(£) =M ¢ 'Fy + Ao(0)uy(2) — Ag()ug(0)

— f Ag(r—t")g(2")dt' + Ny(2),
0
O(r) =I7'F, + A, (0)0'(2) — Ay (£)8'(0)

_f Ag(t—1t")8(¢")dt’ + Ny (2), (19)
0
i, (1) =M 7'F; + A; (0w (1) — A;(1)u,(0)
_J At =t (2)dt + N, (D),
0

with the following definition of the 3 X 3 matrices of the vis-
cous terms and of the corresponding random forces:

Ag(t) = MM 5 TJTB(1)-F; No(t) = — MM 'JTS(1),
Ag() =MIT'QTB()Q; No(1) = — MI~'Q"S(1),
A =HM(0H; N = —HS®). (20)
As mentioned elsewhere,?*! the friction kernels A ()
are connected, through the second fluctuation—dissipation

theorem, to the autocorrelation function of the correspond-
ing random forces N(#) per unit mass, by

(No(0)No (1)) = M 5 'kTA(2),
(Np (0N (1)) =1 ~'kTA, (1), (21)
(N;(ON; (1)) = M ~'kTA, (1)

when the following basic equilibrium thermal conditions are
verified:

(u(0)u’(0)) =0,
(u(0)uT(0)) = M ~ kTR~ (22)

All these equations are obtained for a given ¥ (Fig. 2). When
¥ changes, for instance, from ¥ =1 to ¥ = 2, we have to
change the equations of motion, i.e., the matrix distortion
dy, d;, d,, and 8, the dynamical coordinates u,, u;, and the
viscous coefficients Ay, Ay, and A;. Within these changes,
these equations are formally equivalent for each y, if we re-
define the time origin in each y position. To overcome this
difficulty, a time translation can be done [; =t + t}] which
leads to the change of ¢ into # and of the time origin ¢ = O into
t} [¢} is the new origin, each time the molecule rotates from
a (y — 1) portion of space to another ¥ one]. Of course,
there will be as many values of 7 § as the molecule will go into
the yth well. So, Eqgs. (19) and (20) must be rewritten with
index ¥ for each function and by replacing the zero time
origin by ¢3.

IV. DETERMINATION OF THE VARIOUS TERMS

Three species of terms appear in Eqs. (19), the forces F,
the viscous terms A, and the random forces N.

The forces F for the system (u,, 6, and u;) are those
given by Egs. (8) without further simplifications.

The viscous terms A(?) given in Egs. (20) depend in
fact on two quantities. The matrix B describes, through R,
the effect of the bath (k atoms) in the relaxation mechanism
[cf. Eq. (10)] whereas the matrices J, Q, and ﬁj character-
ize the intensity of the coupling between each motion of the
system and the bath. Note that, if the third equation (20)
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could beinverted, it would be possible to calculate Agand A,
in terms of A;. This is obviously not the case since A; is
connected to a microscopic description of the relaxation pro-
cess, whereas B(#) characterizes the macroscopic counter-
part of the process. An approximation must then be done to
correlate B and A, in an unambiguous way. The matrix f is
therefore approximately written in a diagonal form as

B(t) =41 y_s;e, (23)

where A (?) is a scalar. Such a slight approximation is equiva-
lent to neglect three (and higher) body interactions in the
relaxation mechanism, resulting in a diagonal form for B and
to assume that each k atom has the same effect in the relaxa-
tion process, resulting in the same diagonal terms A for B.
Therefore, each A(t) in Eqgs. (20) can be expressed as a
simple product of a scalar term A (#) characterizing the bath
influence only, the same for all the motions u,, 6, and u; of
the system and of the square of force constants determining
the bath-system coupling, which are obviously different for
each motion. Equations (20) are written as

Ao(t) =A(OMM ;' [T7T],

Ao (1) = A(HMI~'[QQ], (24)

A, () =A() [HTH,].
Since the A ’s are the same, one can expect the same energy
transfer for all motions in a given bath. So, when A remains
small, the transfer process is not efficient for all the system
motions and, inversely when A increases, the transfer process
increases. The differential effect in the transfer process for
u,, 6, and u is then included in the matrices J, Q, and H,.
Since the Q matrix is a column (N — 5) X 1 matrix, the
product Q7-Q will give a scalar including the influence of all
the k atoms. The J matrix and, for each atom j=1,.,4,the
ﬁj matrix are column matrices (N — 5) X 1 with each ele-
ment formed by 3 X 3 matrices; the products J'-J and H-H,
will give 3 X3 matrices summed over all the k atoms. The
latter product ITIJ.T-I‘-VIJ. yields in fact a nearly diagonal matrix
due to the overall symmetry of the crystal. Nondiagonal
terms would vanish for eachj atom if the surrounding crystal
around j would be perfect. It is obviously not the case here
due to the molecule inclusion which provides a slight space
anisotropy around each j atom and thus leads to small but
nonzero, nondiagonal terms. For the same reason, the ap-
proximate isotropy of the crystal leads to similar values for
the diagonal terms, the difference being again due to the
presence of the molecule. In contrast the product J7J is
strictly diagonal as the molecule “sees” an isotropic crystal
around it, but the diagonal elements are more different as the
diatomic shape appears anisotropic. From these consider-
ations, the diagonal elements of the ﬁf-ﬁj product have
been approximately expressed as an average value:

—_—— 4 4

- (@A), = 3 = 3 T, (@25)
y=1 48 /=4
The normalization number 48 corresponds to the sum over
the four wells, over the four atoms j, and for the three Carte-
sian directions. Of course, such an approximate treatment of
the matrix product is valid if the embedded molecule does
not induce drastic changes in the crystal symmetry. This

condition will be assumed to generally hold for the species
considered here. For a nearly isotropic molecule, the nondia-
gonal terms (ﬁf-ﬁi oo are very small and they can be ne-
glected in a first approximation. Therefore, the equation
connected to A; (#) [Eq. (24)] can be written as

(A () ]aa ~A() (HTH)Z, =T,8(1), (26)

where the Markovian limit has been used to describe the
relaxation process of the j atoms on the bath. T'; is directly
connected to the phonon density of states of the crystal and it
can be conveniently described in the Debye scheme as®

I[,~T = (7/6)wp, (27)

where w,, is the Debye frequency. Within this scheme, the
effective square frequency A, (0) will be given by*°

[A;(0) ] e ~ Q% = fwD. (28)
From Eqgs. (26) and (27), one thus calculates A (¢) which is
then replaced into Egs. (24) to determine the diagonal and
nondiagonal parts of A, and A,,.

Finally, the autocorrelation functions of the random
forces Ny, Ny, and N; are connected to the viscous matrices
through Eqgs. (21).

Within these approximations, the final equations of mo-
tions for the primary system are given for each y well as

€(2) =M 'F.(d, + u;,d, + up,6)

+ A (0)e(?) — B.€(t) + N.(2), (29)
where the viscous term
B. ~ (7/6)op,MM = 'h ~'[ATA,], (30)
the effective frequencies
A (0) ~f0b MM J'[ATA,], (31)
and the random forces
(N.(O)N (1)) =kTM 7 'B8.5(1) (32)

are all written for € = u,, @ — 6, and u;, and M, respectively
equal to M, I, and Ke equal to J, Q, and ﬁj.

Equations (29)-(32) are used in paper II as the basic
equations for numerical computations.

V. DISCUSSION

The generalized equations describing the motions of the
molecule and the four in-plane NN atoms have a totally sym-
metric form. They all contain an effective frequency A,, a
viscous term 3, and a random force N, . Regarding the the-
ories obtained in previous papers,?®?! this is an unusual re-
sult since the molecule was not, in general, coupled to the
bath directly. In our method we have considered the possi-
bility of direct relaxation of the molecule energy on the bath
through Ay(#) and A, (2).

The present approach still includes a rotational degree
of freedom which can be very anharmonic. Indeed, the rota-
tion can be nearly free over several periods. It has thus been
necessary to go beyond the usual harmonic motion approxi-
mation of the previous stochastic approaches. The partition
of the space into four subspaces characteristic of the angular
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symmetry of the physical system has permitted us to treat
such anharmonicities and to recover the expressions of the
Langevin equations.” In fact, within the two basic hypoth-
eses on the bath harmonicity and on the harmonic behavior

4807

of the primary system as viewed by the bath, the general
equations of motions are not strictly Langevin equations.
Indeed, instead of Egs. (19), the motions of the primary
system are, in this scheme, given by

é=M_'F, — MM 7 'Al(u,,0,0)) BO)A, (Ro + do,00R; + d))e(?)
— MM - 'Al(u,0,1) B(OA, (R + do,0,R; + d;)€(0)

—MM ! f AT(up,0,u;) B(t — 1A, (Ro + d,0,R; + d,)é(t")dt' — MM ~'Al(u,,0,,)S(1),
0

where the effective frequency, the random force, and the
viscous term depend on the instantaneous variables u,, &, u;.
Such an equation [Eq. (33)], which approaches its Lange-
vin expression when u,, 8, and u, are substituted by their
static values d, 8,, and d;, although time consuming, could
also be solved. Nevertheless, such a procedure may seem
superfluous here since the anharmonicities of the motions
are already included in the force terms.

Moreover, without anticipating on the numerical re-
sults of paper II, it may be noted, going back to the occur-
rence of the quantities 5, and 8 ,in Eqgs. (27) and (30), that
they exhibit some general features. Indeed, since 8, and B,
depend on the same characteristics of the bath as §;, an in-
crease of T' [Egs. (27) and (30)] will produce a concomi-
tant increase of B, and £ ,.0f course, the efficiency of energy
dissipation will depend on the relative magnitude of the
transfer matrices J, 6, and ﬁj , but the relative increase of 5,
and B, will be the same as for 5;. This means that, on the one
hand, the molecule will relax efficiently its energy on the
surrounding ( jor k atoms) in a direct way. But, on the other
hand, an increase of B; will also imply an increase of the
viscous forces connected to the motions of the j atoms.
Therefore, the j atoms will not be able to accept energy from
the molecule, due to the high viscosity 8. So we will expect,
as shown in Fig. 3, two antagonistic effects, one effect which
will tend to increase the energy transfer from the molecule to
the atoms, and another effect which will increase the damp-
ing of the j atoms and decrease the energy transfer efficiency
to these atoms. The accurate determination of the more effi-

r molecule_:

atom j

—

i .
L_ Primary system

Re

FIG. 3. Analogic system for a part of the primary system. The arrow char-
acterizes the coupling between the jth atom and the molecule. The bath
influence is schematized by two linear pistons and one spiral.

(33)

|

cient relaxation channel depends therefore on the quantities
T, J, 6, and ﬁj , but also on the quantity which characterizes
the coupling between the molecule and the j atoms (Fig. 3).
Such a quantity is not analytic here and appears only
through the forces Fy, Fy, and F,. If this latter coupling near-
1y vanished, we would expect a direct relaxation process to
the bath (k atoms). In cubic close packed lattice, thereis no
reason that the couplings between the molecule and the j
atoms, on the one hand, and between the molecule and the
eight NN k atoms located outside the rotational plane, on
the other hand, will be very different. Therefore, in the lack
of numerical data, it is difficult to conclude what is the more
efficient relaxation channel. We can nevertheless conclude
that the direct transfer of energy to the bath is favored,
whereas the transfer to the NN j atoms is impeded when A
increases.

The numerical results applied to the systems formed by
CO or CH,F molecules trapped in ccp rare gas crystals will
show if the general tendency discussed here is rather the
direct transfer to the bath or the transfer through the pri-
mary atoms.
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APPENDIX: NOTATIONS AND SYMBOLS

Molecule:

M,: mass;

I moment of inertia;

r,: instantaneous position;

€: instantaneous orientation;

R, = 0: molecular site at equilibrium for the perfect

crystal;

6,: molecular equilibrium orientation;

d,: displacement of the molecule center of mass (distort-
ed configuration for the crystal);

u,: dynamical variable (r, = dg + u,).
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Atoms j of the primary system:

M; =M: mass;

r;: instantaneous position;

R;: atomic site for the perfect crystal equilibrium;
d;: displacement due to the molecule inclusion;
u;: dynamical variable (r; = Rj +d; 4+ u).

Atoms k of the bath:

M, =M: mass;

r,: instantaneous position;

R, : atomic site for the perfect crystal;

d, : displacement due to the molecule inclusion;
u,: dynamical variable (r, = R, +d, + u,).

Interactions:
v: interaction between two matrix atoms ( jor k atoms);
V: interaction between the molecule and a matrix atom.

Equilibrium:

D: instantaneous configuration (r,,8,r;) for the primary
system and distorted equilibrium configuration
(R, + d,) for the bath;

D, distorted equilibrium configurations for the primary

system (d,,60,R; + d;) and for the bath (R, +d, ).

Generalized forces:
F,= —[V.V]p; € =g u;, 6, u,; and calculated for
the D configuration.

Generalized force constants:
[Rix ] p,: force constant between the bath atoms k and
k’ calculated for the D, configuration;
[ H;] p,: bilinear coupling constant between the atoms j
and k calculated for the D, configuration;

[/ 1p,: bilinear coupling constant between the molecule
translation and the k th atom;

[Q 1,, : bilinear coupling constant between the molecule
rotation and the & th atom.
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