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The stochastic classical trajectory method is used to calculate the energy relaxation of a highly
excited diatomic rotor trapped in rare gas crystal at T = 20 K. The friction kernels, which
appear in the generalized Langevin equations characterizing the motions of the molecule and
of nearest neighbor crystal atoms, are expressed in terms of the interaction potentials. The
influence of the surrounding crystal on the relaxation mechanism and the efficiency of the
various dissipation channels are analyzed by changing the rare gas species and by artificially
switching off some channels. Within the limits of the model (classical two-dimensional
rotation of the diatomic molecule, coupled on the one hand to a restricted number of first shell
atoms themselves coupled to the bulk crystal and on the other hand to the other first shell
atoms considered as pertaining to the bath), the results of the calculations show that, in the
present case, rotational relaxation is a rapid process, over the picosecond scale, and that the

. local mode connected to the motions of the molecular center of mass plays a major role in the
mechanism. This local mode is responsible, at short times #<0.5 ps, for the relaxation of 95%,
75%, and 60% of the rotational energy excess in Ar, Kr, and Xe crystals, respectively. The
remaining energy is then dissipated over longer times via the local mode or directly towards
the crystal modes. A striking energy saturation phenomenon of the local mode is exhibited in

xenon crystal.

L. INTRODUCTION

The study of nonradiative relaxation processes of mo-
lecular systems in the condensed phase provides noticeable
information on the interaction potentials and on the dynam-
ics of these systems. Phase and energy relaxations of impuri-
ty molecules trapped in matrices have been extensively in-
vestigated' from an experimental point of view, more
specially for diatomic? and symmetric top species.’

To overcome the difficulty connected to a realistic de-
scription of the dynamic couplings between the molecule
and the crystal, the theoretical approaches generally assume
that only a dominant process, among all the possibilities,
contributes to the relaxation mechanism. The vibrational en-
ergy relaxation of molecules trapped in matrices is usually
considered as a multiphonon process.* The molecular vibra-
tional quantum is dissipated over the phonons of the lattice
unaffected by the presence of the molecule, but experiments
on hydrogenated molecules'~ have suggested that orienta-
tional and translational local modes of the molecule can play
a major role as energy acceptors. So, quantum models have
been developed®™® to include the influence of these local
modes in the relaxation. These models are yet either very
simple and qualitative or accurate and extremely complicat-
ed. Moreover, revisited interpretations'® of the vibrational
relaxation of larger molecules (CH, F) lead to the conclu-
sion that all the relaxation channels (multiphonon, pure lo-
cal modes and mixed ones) contribute in a similar way to the
energy dissipation.

*' To whom correspondence should be addressed.
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From these features, it thus appears as essential to get
more information on the manner the local modes influence
the dynamic coupling between the energy donor and the ulti-
mate acceptor. Since the molecular orientational modes ap-
pear to be privileged quasiresonant modes for the vibrational
quantum, the study of the depopulation of highly excited
rotational levels of a molecule is a crucial step in the interpre-
tation of the relaxation mechanism of the vibrational energy.

We use here a quasiclassical description for the dynam-
ics of the trapped molecule, developed in previous papers
(I''and I1'?). The crystal dynamics is described first by the
motions of a reduced number of nearest-neighbor atoms and
second by stochastic terms characterizing the crystal influ-
ence, included in the classical equations of motion of the
molecule and of the nearest-neighbor atoms. The general-
ized Langevin equations thus obtained for the reduced sys-
tem are then solved using a numerical integration, within the
framework of the stochastic classical trajectory method.

A classical description of typically quantal phenomena
frequently becomes a powerful tool for the interpretation of
complicated molecular systems. For these systems, com-
plete quantum mechanical calculations become untractable,
and simulations''™'® are generally pertinent alternatives for
describing atomic motions and time-dependent molecular
processes. Such an alternative appears in fact much more
accurate than expected a priori because the statistical aver-
age over the dynamics of the system hides the quantum be-
havior. Consequently, the calculated macroscopic observ-
ables connected to the relaxation mechanisms exhibit, in the
classical approach, the main aspects of the measured ones.
For low temperature crystals, the classical approximation
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must, however, be slightly corrected. In order to take into
account the zero point motions, it is necessary to introduce,
as discussed in Ref. 13(c), an effective quasiclassical tem-
perature, defined as the equivalent temperature needed to
produce the quantum average energy of the bath oscillators.

In this paper, we study the rotational relaxation of the
typical molecule CO trapped in argon, krypton, and xenon
crystals at 7= 20 K. The molecule is assumed to be highly
excited, with an equivalent quantum energy corresponding
to the rotational quantum number j = 30. Such a value cor-
responds approximately to the energy of the vibrational
quantum v = 1—p = 0. Although it is now known? that the
vibrational relaxation of CO is a radiative process with ener-
gy migration inside the rare gas crystal, this diatomic rotor
with a relatively large moment of inertia is appropriate for a
classical approach and helps as a model for other trapped
species. The present study is also a complement of previous
results obtained'? for the relaxation of the same trapped mol-
ecule, but with a much smaller rotational energy (j<10).

The main aspects of the stochastic trajectory approach
are presented in Sec. II; more details can be found in papers 1
and II. The numerical background necessary to the calcula-
tion of the various energy observables is given in Sec. I1I. The
results are presented in Sec. IV and the environmental effects
on the relaxation mechanisms are studied by changing the
matrix. The efficiency of the various relaxation channels
and, more particularly, the importance of the local modes as
intermediate energy acceptors is analyzed in Sec. V, by con-
sidering each relaxation channel in a separated way. The
application of the method to another physical systems is dis-
cussed in Sec. VI.

Il. THE MODEL

The formal approach and the methodology needed for
the interpretation of the energy relaxation are explained in
paper L. The total system “molecule—crystal” is separated
into three parts:

(i) the substitutionally trapped molecule which under-
goes planar rotation and vibrations in the vicinity of the equi-
librium crystal site;

(ii) the primary system formed by four crystal atoms
which are nearest neighbors of the molecule and located in
the plane of the molecular rotation (these atoms vibrate
around the equilibrium positions of the distorted crystal);

(iii) the remaining crystal, which contains all the other
degrees of freedom in three dimensions, is referenced as the
bath.

Figure 1 represents the molecule and the primary sys-
tem. The interactions among the three partners *“molecule-
primary system-bath” are described by pairwise atom-atom
6-exp potentials. Each partner interacts directly with the
two others and can thus dissipate its energy on all the modes
of the other partners. We then assume that the bath motions
are harmonic and use Laplace transform technics to elimi-
nate the explicit dependence of the bath coordinates in the
equations of motion tied to the molecule and to the primary
system. The 11 remaining equations of motions connected to
the rotation @ and vibration u, of the molecule center of mass
(c.m.) and to the vibrations u, (p =1,...,4) of the four
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FIG. 1. Various partners and relaxation channels (arrows). (a) The gen-
eral case; (b) relaxation via the translational mode of the molecule, only;
(c) direct relaxation on the crystal.

atoms of the primary system are written, after algebraic
manipulations, as'!
(1) =I~"Fy + Ao(0)(6(8) — 65) — B,0(1) + Ny (1),
g (1) = M "Fo + Ao(0)uo(1) — Boig (1) + No(1), (1)
ii,(1) =M "'F, + A, (0)u, (1) — B,u, (1) + N, ().
Equations (1) are generalized Langevin equations.
They contain the torque F, and the forces F experienced by
the molecule with moment of inertia I and mass M, and by
the pth atom of the primary system with mass M. These
forces characterize both the instantaneous influence of the
other partner and the effect of the static bath. A,(0) and
A(0) are (1x1) and (2X2) tensors, respectively, which
describe the renormalization of the motions of the molecule
and of the primary system by the bath motions. The friction
coefficients 3, and 3 are responsible for the energy dissipa-
tion of the rotational or translational modes of the molecule
and of the vibrational modes of the primary system cirectly
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towards the bath. These coefficients are also (1x1) and
(2X2) tensors, respectively. The remaining torque N, ()
and forces N(7) in Egs. (1) are the random forces due to the
influence of the thermal motion of the bath modes on the
primary system and on the molecule. The temperature T of
the crystal is accurately introduced through the second fluc-
tuation—dissipation theorem relating the random force cor-
relations and the friction kernels, as''

(N (O)N, (1)) =2k TM [ 'B.5(2) (2)

with M, = I, M, or M according to € = 6, 0 or P. The delta
function comes from the fact that the Markovian approxi-
mation has been used. A, (0), B,, and N, are then given in
terms of tensors 7, which characterize the intensity of the
coupling between the motions of the “molecule + primary
system” and the bath, as

A.(0)=QT,, B.=TT.. (3)

Q) and I" are constants which depend only on the dynamical
characteristics of the crystal and they are easily evaluat-
ed''"* from the knowledge of the phonon density of states of
the perfect crystal. The tensors 7, are proportional'! to the
ratio of the inertia elements M /M, and to the coupling force
constants between the € motion and the bath motions. These
force constants are calculated from the expression of the in-
teraction potential. Thus, the behavior of A, (0), 8., and
N_(t) (e = 6and 0) is very sensitive to changes of the ratios
M /I or M /M, and of the corresponding dynamical cou-
plings. These couplings characterize the direct dissipation
efficiency of the rotational or translational energy of the
molecule towards the bath. Since the local modes are cou-
pled together and to the crystal, all the relaxation channels
are thus considered in our model.

The present dynamical model can be compared to those
reported in the literature."*”'* More particularly, it does not
use all the ingredients of the more complete molecular time
scale generalized Langevin theory (MTGLE) within the
framework of the chain equation formalism.'* According to
this approach, the energy of the donor system is dissipated
into the bath via stepwise flow through successive atomic
shells around the donor, whereas the conventional Langevin

TABLE 1. Potential parameters for the pairs CO-rare gas.

TABLE II. Dynamic parameters for rare gas crystals.

a b c c
X op (ecm™") @, (em™!) T (ps™") Q (ps™?)
Ar 64 45 2.00 1.00
Kr 50 35 1.56 0.61
Xe 4.5 31 1.39 0.48

*Debye frequency from Rare Gas Crystal, edited by M. L. Klein and J. A.
Venables (Academic, London, 1977), Vol. I1.

®Vibrational frequency used to determine the equivalent temperature Tyc-
‘Dynamic parameters used to calculate the frequency renormalizations and
the friction terms; cf. paper 1.

method considers the bath as a continuum bulk. In the pres-
ent paper, the first crystal shell is restricted to four atoms
assumed to be more efficiently coupled to the diatomic rotor
than the eight other atoms of this shell. These eight atoms
and the other shells play the role of a bulk bath for the exact
dynamics of the molecule and its four privileged neighbors
coupled to the Langevin bath. Our model appears as an in-
termediate between the MTGLE truncated at the first chain
equation step and the conventional Langevin method, in the
sense that it allows us to consider possible resonances and
feedback energy flow between the molecule and the four
atoms, but it prevents such phenomena between the four
atoms and the surrounding crystal.

lll. NUMERICAL BACKGROUND

The previous formalism is applied to the motion of a
model molecule CO trapped in Ar, Kr, and Xe matrices at
T = 20K. The various parameters used in the 6-exp pairwise
atom-atom potential and the dynamical characteristics of
the three rare gas crystals are given in Tables I and I1, respec-
tively.

The equilibrium configuration for the distorted crystal
due to the substitutional molecule is obtained with respect to
the perfect crystal one by integrating Egs.(1) at 7= 0 K, as
explained in the appendix of paper II. T. tensors are then
calculated (cf. Table III) and the corresponding terms
A.(0) and B, can be evaluated. The random forces defined

TABLE III. Tensors T.2

A Bx107% a
Pair (KImol=' A% (KImol~') (A" Footnote Matrix T, T, T, 7, 7, T,
Ar-Ar 6554 3.27 3.305 a Argon XX 1 1 1 1 0.908
C-Ar 31379 3.12 3.493 a Y44 1 1 1 1 0.183 0.275
O-Ar 2737 3.28 3.706 a XZ -0072 0072 —0.041 0.041 0.0
Kr-Kr 11443 2.75 3.033 b
C-Kr 4 466 2.85 3.348 [ Krypton XX 1 1 1 1 0.906
O-Kr 3 660 3.00 3.545 [ zzZ 1 1 1 1 0.138 0.285
Xe-Xe 27726 7.29 2.921 b XZ —0.196 0.196 —0.181 0.181 0.0
C-Xe 7 085 4.66 3.273 c
0O-Xe 5927 4.90 3.455 c Xenon XX 1 1 1 1 0.228
zZ 1 1 1 1 0.021 0.074
XZ —0.353 0353 —0.349 0.349 0.0

*K. Mirsky, Chem. Phys. 46, 445 (1980).

°J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases
and Liquids (Wiley, New York, 1967).

“These results have been obtained from a and b after applying the usual
combination rules.

*These results are for the well corresponding to 8, = 7/2; for the three re-
maining wells, equivalent results can be obtained from the symmetry rules
of the crystal (cf. paper II).
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by Eq. (2) are assumed to be white noise Gaussian random
forces. The numerical treatment of the Dirac function in Eq.
(2) is done according to the algorithm developed in Ref.15.
Thus the random forces are treated as Gaussian random
variables characterized by the matrix autocorrelation func-
tions

2k, T

N.(O)N.(0)) =—2-3., 4
(N.(O)N_(0)) MAtB‘ (4)

€

where At is the numerical integration time step.

The equations of motion (1) have been solved by using a
one-step integrator subroutine. The convergence has been
tested first by vanishing the nonconservative terms in Egs.
(1) and verifying that the total energy remains constant, and
second by considering all the terms in the equations of mo-
tion and using two different one-step integrator subroutines
with the same path At. The value A¢ = 6.25 X 1073 ps is suf-
ficient to ensure an accuracy better than 0.5% on the loca-
tions and velocities of the molecule and of the primary sys-
tem, inside the integration domain. As mentioned before, an
effective quasiclassical temperature T, must be introduced
in order to take into account the zero point motions of the
crystal. The averages over the trajectories of the molecule
and of the atoms of the primary systems are then obtained
for initial conditions selected by a Monte Carlo sampling
from a canonical thermal distribution at the temperature'®

g

= —— coth

— h&)()
T 2k,

s 5
oy (5)

where w, characterizes the vibrational frequency of the crys-
tal atoms assumed to behave like 2D isotropic oscillators.
The values of w, for the rare gas crystals are given in Table IL.

Numerical tests on the behavior of the random forces
N, (2) have been performed by integrating Eqs. (1) for the
CO/Ar crystal system in thermal equilibrium at 7= 20 K.
The total energy and the energies of the molecule and of the
primary system have been calculated for a time integration
interval equal to 9 ps, after averaging over 1200 trajectories.
It has been verified that all these energies remain constant
with time and are equal to the values obtained from a Monte
Carlo sampling calculation.

Then, the rotational excitation of CO, at ¢t = 0, is intro-
duced in the equations of motion by replacing the thermal
rotational kinetic energy of the molecule by its value ob-
tained for j = 30. The rotational relaxation mechanism is
first studied by considering all the dissipative channels, as
schematized in Fig. 1(a). Environmental effects are ana-
lyzed for the three rare gas crystals Ar, Kr, and Xe. The
relative contributions of the various dissipative channels are
then calculated by assuming the rotational energy is entirely
transferred to the crystal via the motion of the molecular
c.m. [Fig. 1(b)] or directly transferred to the primary sys-
tem and to the bulk crystal [Fig. 1(c)].

In the first case [Fig. 1(b)], the dynamical coupling
between the molecule and the primary system is switched off
by fixing the four p atoms at their equilibrium configuration;
and the direct coupling between the CO rotation and the
bulk crystal is taken to be zero (8, = 0). Such a numerical
procedure has nevertheless a drawback. Indeed, since the

X 31
0‘2 _____________________

h
]
'
I
'
'
)

Z
d 3

FIG. 2. Instantaneous configurations of the CO molecule and of the pri-
mary system. The square (solid lines) and deformed square (dashed lines)
connect the equilibrium locations of the atoms in the perfect and doped
crystals, respectively. d is the distortion vector, whereas # and @ are dynami-
cal variables.

atoms of the primary system do not move, the energy relaxa-
tion from the local ¢.m. mode to these atoms is forbidden. So,
we can expect that the dissipative ability of this local mode
towards the remaining energy acceptors (the bulk crystal) is
appreciably reduced. Unfortunately, there is not another
simple way for monitoring the rotational energy flux exclu-
sively through the local mode, without altering in a drastic
manner the equations of motion.

In the second case [Fig. 1(c)], the molecule c.m. is as-
sumed to be fixed at its equilibrium position and therefore all
the dynamical couplings, implying this local mode, vanish.

For the three situations of Fig. 1, 800 trajectories are
considered for time intervals equal to 3 ps which lead to the
computation of the probability distribution function P( jt)
for the rotational quantum number j.'® The mean rotational
energy of the molecule is then defined, in the quasiclassical
approach, as

(Ee (1)) = 3 B(j+ 1jP(j.1), (6)
j=0
where B characterizes the CO rotational constant (B = 1.93
cm™'). The other mean energies (E.,, (¢)) and (E,, (1))
for the molecular c.m. and the primary system are strictly
classical quantities.

IV. ENVIRONMENTAL EFFECTS ON THE ENERGY
RELAXATION PROCESS

A. Argon crystal

Figures 3(a) and 3(b) exhibit the time evolution of the
probability distribution function P( j,#) and of the mean ro-
tational energy (E,,, (¢)) of the molecule, respectively. Fig-
ure 3(b) shows that 95% of the rotational energy has been
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FIG. 3. Rotational relaxation energy for CO trapped in argon crystal. (a)
The probability distribution function P( j,¢) for the rotational quantum
number j (time ¢ in ps); (b) mean rotational energy vs time (energy in
cm™').

released after a time ¢ = 0.5 ps; the remaining 5% is then
dissipated over a time of about 3 ps. The distribution func-
tion in Fig. 3(a) is sharp; this indicates a more probable j
value at each time which corresponds, in a quantum scheme,
to a level-to-level relaxation mechanism. After a rapid drift
of the probability maxima with time from j = 30 to j=~10,
these maxima tend to slowly evolve down to the lower values
of j, with a distribution shape which looks like the equilibri-
um Maxwell-Boltzmann distribution. At very short time,
the probability for finding the molecule on the excited rota-
tional level j = 31 does not vanish (P~0.38%); indeed the
absorption of two phonons by the molecule with energy
2% 60 cm ™! nearly equal to the level spacing though highly
unprobable, at low temperature, is nevertheless possible.
The probability distribution function P(E,t) for the to-
tal energy E of the reduced system “molecule + primary
system” is shown in Fig. 4 as a function of Eand ¢. In an inset
appears the corresponding mean energy (E(?)), which mo-
notonously decreases with time; 2.5 ps are required to dissi-
pate the initial energy towards the bulk crystal. The distribu-
tion function is here again concentrated around the most

4629
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FIG. 4. Behavior of the energy of the system “molecule + primary system”
vs time. The probability distribution function P(E,?) and corresponding
mean energy {E(t)) for CO trapped in argon (¢in psand Eincm™').

probable values at each time. The fact that the relaxation
time for the energy E appears to be five times longer than the
time characterizing the rotational energy dissipation sug-
gests a participation of intermediate local modes. This fea-
ture will be analyzed in Sec. V A.

Figures 5(a) and 5(b) exhibit the behavior of the prob-
ability distribution functions P(E, , ,¢) and P(E,, ,t) for the

FIG. 5. Rotational relaxation for CO trapped in argon crystal (a) Energy of
the local translational mode vs time. The probability distribution function
P(E,,, ,t) and mean energy {E, . (1)). (b) Energy of the primary system
modes vs time. The probability distribution function E(P,,,s,) and mean

energy (E,, (£)).
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energies of the molecular ¢.m. and of the primary system.
The corresponding mean energies are given in insets. The
comparison with curves of Figs. 3 shows that the rotational
energy is dissipated, at very short times on the translational
molecular mode which has its maximum excitation when the
rotational mode has released nearly all its energy (i.e., at
t=0.5 ps). Indeed, the probability distribution function for
the local mode energy exhibits a sharp peak for 1=0.5 ps
which corresponds to the excitation maximum. In contrast,
the primary system exhibits a more broadened distribution
function. The difference between the shapes of the distribu-
tions at short time is a consequence of the local nature of the
translational molecular mode and of the collective character
of the primary system modes.

The relaxation process of the local mode is relatively
rapid since the equilibrium distribution is obtained for times
around 2 ps. The fact that this distribution remains concen-
trated around more probable energy values can be interpret-
ed as the inability for the molecular c.m. to store and dissi-
pate any energy quantity. This energy selectivity is a
characteristic of the local nature of the translational motion.
In contrast, the distribution function connected to the pri-
mary system energy is broadened and the energy dissipation
towards the bulk crystal is much less efficient in that case.
This is a consequence of the, at least partial, collective nature
of the motions of the primary system. Eight modes with fre-
quencies located inside the bulk crystal phonon band (in-
stead of two with localized frequency for the molecular
c.m.) can accept energy. Note also the occurrence of a sec-
ond peak in the curve (E,, () ), which is probably due to the
deexcitation of the local mode towards the primary system.

B. Krypton crystal

The probability distribution function P( j,¢) for the ro-
tational number and the mean rotational energy (E,, (?))
for CO trapped in krypton crystal are represented in Figs.
6(a) and 6(b), respectively. At short times (¢<0.4 ps) there
is no significant difference with the results obtained with
argon; at longer time, the relaxation rate decreases signifi-
cantly since at ¢ = 1 ps, the mean energy (E,., (¢)) of the
molecule is still equal to 150 cm ™! in Kr instead of 70 cm ™'
in Ar. The distribution function exhibits in the time interval
(0.4-1.5 ps) abroadened structure leading to the occurrence
of intermediate values of j (20 <j < 10) with a noticeable
probability. A second curve of probability maxima appears
with a less efficient dissipation mechanism since the rota-
tional energy can remain appreciably large over 1 ps. This
second process, which does not occur in argon, suggests the
superimposition of two relaxation channels.

The distribution functions P(E,), P(E.,.t), and
P(E, t) drawn in Figs. 7, 8(a), and 8(b), respectively, do
not exhibit significant differences with those given for argon;
the only difference is a general broadening of the distribu-
tions which reveals a trend for a less efficient energy dissipa-
tion in krypton. The insets of these figures show that the
mean energy of the reduced system (molecule + primary
system) monotonously decreases, but with a slower rate.
Moreover, a shoulder for t~1.1 ps clearly appears in the
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FIG. 6. Rotational relaxation energy for CO trapped in krypton crystal (the
same as Fig. 3).

curve of (E, . (2)), which is connected to a lesser dissipa-
tion efficiency for the local mode. This feature is also evi-
denced in the curve (E,, (¢)) for the primary system since
the energy remains equal to about 250 cm ™' over 1 ps and
then decreases slowly.

Wiy -
Ly,
’2,’/.'/”’///' v

Tt /;"7/"‘
0 >0

FIG. 7. Energy of the system “‘molecule + primary system” for CO trapped
in krypton (the same as Fig. 4).
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FIG. 8. Rotational relaxation for CO trapped in krypton crystal. (a) Ener-
gy (cm™ ') of the local translational mode vs time (ps); (b) energy (cm™"')
of the primary system modes vs time (ps).

C. Xenon crystal

In xenon crystal, the existence of two different relaxa-
tion channels already mentioned in krypton appears clearly
[cf. Figs. 9(a) and 9(b) ]. The probability distribution func-
tion P( j,t) is very broadened and 4 ps are necessary for this
distribution to recover its equilibrium shape. All j values in
the range (0-20) are highly probable, whereas higher values
of j have a vanishing probability for £>0.4 ps. This means
that a rotational energy of about 500 cm™! can be easily
dissipated at short time, but much longer times are required
to relax the remaining 1500 cm ™.

Moreover, the relaxation rate of the total mean energy
of the system (Fig. 10) becomes smaller and the probability
distribution function P( E,t) is obviously wider. Similar con-
clusions can be done on the functions P(E, . ,t) and
P(E,..t) [cf. Figs. 11(a) and 11(b)] which considerably
broaden. The curves of mean energies (E,,  (¢)) and
(E,, (1)) still exhibit peaks with energies equal to 300 cm ~!
at short time (z<1 ps), but they remain nearly constant
(around 200cm ') overa long time scale, as a consequence
of the inefficiency of the relaxation mechanisms. Note also
that a feedback effect between the various modes could pos-
sibly explain these results (cf. Sec. V). In that case, the ener-

1 a
P(j,b
0
I./ I/i:';:;'/lj(l."'v .
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FIG. 9. Rotational energy relaxation for CO trapped in xenon crystal (the
same as Fig. 3).

gy of the primary system could be transferred back to the
molecule rotation, directly or via the local mode.

To conclude this section, striking environmental effects
occur by changing the rare gas species. The relaxation mech-
anism which seems to be dominated by the local mode chan-

372360

FIG. 10. Energy of the system *‘molecule-primary system” for CO trapped
in xenon (the same as Fig. 4).
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FIG. 11. Rotational relaxation for CO trapped in xenon crystal. (a) Energy
(ecm™") of the local translational mode vs time (ps); (b) energy (cm™') of
the primary system modes vs time (ps).

nel in the lighter rare gas crystal exhibits a trend for a super-
imposition of two channels as the mass of the rare gas atom
increases. The interpretation of the relaxational mechanisms
is yet not straightforward on the basis of these results. In-
deed, Figs. 3-11 do not give direct information on the energy
quantity accepted by each mode, but instead, they represent
only the difference between the stored and the released ener-
gy at each time. Moreover, the dynamical coupling between
all the modes does not allow us to determine unambiguously
the most efficient relaxational channel. Finally, it is not pos-
sible to calculate the part of the rotational energy which is
directly transferred to the bulk crystal. All these points re-
quire a further separation of the relaxation channels, as
shown in Fig. 1.

V. THE ROTATIONAL RELAXATION CHANNELS

In this section, we analyze the relative contributions of
the molecular local mode and of the crystal modes in the
rotational relaxation mechanism by considering these two
channels in a separate way [cf. Figs. 1(b) and 1(c)].

A. Argon crystal

Figures 12(a) and 12(b) exhibit the probability distri-
bution functions P( j,t) when the rotational energy dissipa-
tion proceeds via the local mode channel only or directly
towards the crystal modes. The behavior with time of the
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FIG. 12. Rotational relaxation for CO trapped in argon crystal. (a) The
probability distribution function P(j) and mean rotational energy
(E.., (1)) when the only relaxational channel is the local mode; (b) the
same curves when the direct relaxational channel only is considered.

corresponding rotational energy is given for the two cases.
These curves may be compared to the curves obtained in the
general case (Fig. 3). We see that, at short time 2<0.5 ps, the
distribution in Fig. 12(a) is very similar to the general one.
However, for longer times, the first distribution becomes
wider than the second,; this indicates a lesser dissipation effi-
ciency. As already mentioned, this could be partly due to the
numerical trick used to isolate the primary system from the
other relaxational modes which prevents energy transfer
from the local mode to the primary system. This leads to a
feedback mechanism for which the local mode is unable to
dissipate more energy and it gives back a part of this energy
excess to the molecular rotation. Such a phenomenon is ex-
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hibited by the noticeable probability for finding high j values
at long times [Fig. 12(a) ] and by the behavior with time of
the mean rotational energy. After a rather rapid decrease of
this latter energy for 1<0.4 ps, very similar to the behavior
observed in the general case [Fig. 3(b)], the slope of the
curve suddenly decreases; the energy excess (about 400
cm') can no longer be dissipated and the local mode satu-
rates.

The probability distribution function P(j,#) corre-
sponding to the contribution of the crystal modes only [Fig.
12(b) ] exhibits a monotonously slow decrease of the rota-
tional quantum number j. The slight increase of the relaxa-
tion rate, around 2 ps, corresponds to a resonance between
the rotational and the crystal modes. The exponential de-
creasing time behavior of the mean rotational energy with a
large time constant characterizes a relaxation process which
follows a first-order rate law. It is obvious that the curves of
Fig. 12(b) do not exhibit the behavior of the general curves
(Fig. 3), at least at short times.

From these results, we can thus conclude that the relax-
ation of the rotational molecular energy in argon crystal is
mainly due to the local translational mode of the molecule
which acts as an efficient energy acceptor. In fact this effi-
ciency is probably underestimated in our results since, as
mentioned before, we have disregarded the coupling
between this local mode and the primary system [Fig.
1(b)]. An optimal efficiency would lead to a less wide distri-
bution shape for low values of j and to a saturation energy
much smaller than the value observed in Fig. 12(a).

B. Krypton crystal

A similar analysis of the relative contribution of the two
channels for the rotational relaxation of CO trapped in kryp-
ton crystal is presented in Figs. 13(a) (local mode channel)
and 13(b) (crystal modes). Whereas the short time behav-
ior of the probability distribution function P( j,#) connected
to the relaxation via the local mode is similar to the general
case [Fig. 6(a)], as for argon crystal, the long time evolu-
tion (£>0.3 ps) exhibits very striking damped oscillations.
These oscillations of the distribution function characterize
the successive transfers of the energy from the local mode to
the rotation and vice versa. The small damping with a large
time constant and the sharp shape of the distribution around
high j values show that the local mode is a very inefficient
energy dissipator. This is particularly well shown on the
curve (E, (1)), where, after 0.3 ps, the mean rotational en-
ergy remains nearly constant around a value equal to 1250
cm™!

The crystal modes in krypton crystal are as in argon
very inefficient energy dissipators [Fig. 13(b)]. This is
clearly shown in the curve {E_, (#)) where the exponential
time behavior with a large time constant is very similar to
that drawn for argon crystal. However, since the local mode
channel is also inoperant as a dissipator, both channels ap-
pear to play a more similar role in the rotational energy re-
laxation. The simultaneous analysis of Figs. 6 and 13 allow
us to understand the occurrence, in the general case (Fig. 6)
of a second probability line due to the influence of the crystal
modes in the relaxation mechanism.

2000
PO, <Eror >

FIG. 13. CO trapped in Kr crystal (the same as Fig. 12).

The comparison of curves P(j,¢) and (E,,, ()) of Figs. 6
and 13 at short times (#<0.3 ps) also shows that the initial
acceptor of rotational energy is the local translational mode.
This was not at all obvious from the single analysis of the
energy curves obtained for the general case. The large initial
slope of the curve (E,,, (¢)) in Fig. 13(a) exhibits in fact a
break which is probably too energetic. Indeed the already
mentioned numerical trick is responsible for a decrease of
the dissipation efficiency of the local mode. Therefore, if the
dynamical coupling between the local mode and the primary
system did not vanish, we would expect a curve (E,, (?))
with a less energetic asymptote in the range 1-3 ps.

We can thus conclude that the rotational relaxation of
CO in krypton crystal is a superimposition of two processes.
The local mode is the first energy acceptor, but the crystal
mode relaxation channel becomes more and more important
as time increases. This second channel appears in fact domi-
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nant at long times due to the inability of the local mode to
dissipate the energy excess.

C. Xenon crystal

The stochastic classical trajectory results in the heaviest
rare gas crystal are presented in Fig. 14. The same features as
for krypton, but even magnified, are obtained with xenon.
The damped oscillations of P( j,#) connected to the contri-
bution of the local mode only in the relaxation process char-
acterize the dissipation unefficiency of this channel [Fig.
14(a)]. On the other hand, the crystal modes appear to be
very poor energy dissipators with respect to the krypton case
since the distribution function [Fig. 14(b)] remains narrow
and concentrated around high j values even at ¢~3 ps. The
curve (E_, (1)) for thelocal mode is nearly constant, after a

rot

FIG. 14. CO trapped in Xe crystal (the same as Fig. 12).

rapid decrease at short time, whereas the same curve for the
crystal modes monotonously decreases with a very large
time constant.

Thus in the heaviest crystal, there is a striking separa-
tion between the relaxation channels. At short times, the
rotational energy is dissipated via the local mode channel
and the direct relaxation on the bulk crystal is negligible. At
long times, the crystal mode channel supplements the local
mode one and becomes the single energy acceptor. Figure 9
exhibits clearly this separation with the occurrence of two
different probability lines. Of course, the fact that the distri-
bution in Fig. 9 is not a simple superimposition of the distri-
bution obtained in Fig. 14(a) and 14(b) can be interpreted
as the result of the influence of intermediate dynamical cou-
plings between the local mode and the crystal motions.
These couplings, which are switched off in cases b and ¢ of
Fig. 1, allow the energy to be shared among the various ac-
ceptors in the general case.

VI. DISCUSSION

A. Interpretation of the results in terms of dynamical
couplings

The results obtained in Secs. IV and V show that a CO
molecule trapped in rare gas crystals at 7= 20 K can relax
large rotational energies (j~30) over the picosecond scale.
The relaxation times increase in the sequence Ar, Kr, Xe. In
fact, the relaxation processes in Kr and Xe are, respectively,
three and eight times longer than in Ar crystal. At early
times (#<0.5 ps), the local translational mode of the impuri-
ty appears as the dominant relaxation channel, being respon-
sible for the relaxation of 95%, 75%, and 60% of the rota-
tional energy excess in Ar, Kr and Xe crystals, respectively.
The remaining energy is then dissipated over longer times,
mainly via the crystal modes.

Two species of quantities change when a rare gas is sub-
stituted to another one—the atom mass and the dynamic
couplings. Both occur in the friction coefficients 5, through
the T, tensors [Eq. (3)] and through the parameters () and
I', which are directly connected to the Debye frequencies of
the rare gas crystals. On the one hand, the relative masses of
rare gas atoms with respect to the molecule are, respectively,

M,

m, = = 1.4, 3,0, and 4.7,
(4]

On the other hand, the ratio of the dynamic coupling force

constants (7T, ) are, respectively,
r, = 0.64, 0.30, and 0.05

and the corresponding Debye frequencies are given in Table
IL.

So, when we compare the values of 3, which character-
izes the dissipative efficiency of the local mode, the ratio
product m, - r, takes similar values for Ar and Kr, but it is
about 4 times smaller for Xe. Moreover, the additional fact
that the Debye frequency decreases as the rare gas atom
mass increases leads to values of 53, which follow the rule

Bo(Ar) >Bo(Kr) >B0(Xe) .
This rule explains why the local translational mode of the

for X = Ar, Kr, and Xe.
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molecule plays a much more significant role as an energy
dissipator in Ar than in Kr and a fortiori in Xe crystal.

B. Application to other systems

On the basis of this simple discussion, we can wonder
whether the present method could be applied to another
physical systems. Applicability of the method rests on the
following requirements:

(i) small rotational constant for the diatomic rotor in
order to satisfy the validity condition of the classical treat-
ment;

(ii) molecular rotation described by a single degree of
freedom (planar rotation assumption);

(iii) molecular size consistent with a monosubstitu-
tional crystal site;

(iv) assumption of Markovian dynamics valid for most
of the crystal shells, including part of the first shell.

Hydrogenated diatomic molecules which are generally
potential candidates to vibrational relaxation mechanisms
via the rotational modes do not satisfy requirements (i) and
(ii). On an other hand, vibrationally excited molecules such
as CO or N, are known to relax energy excess by a radiative
process via migration in the crystal. Larger diatomics, such
as halogenures, which could relax via local mode and/or
multiphonon channels do not necessarily verify item (iii).
Thus, it appears that the molecular system considered in this
paper can be considered rather as a model system for poly-
atomic molecules undergoing specific motions in crystals.
For instance, CH,F would be an interesting candidate for
simulation calculations in the sense that it can be schema-
tized as a diatomic (CH,~-F) rotor which undergoes in rare
gas matrices hindered quasi-2D rotational motions.'® With-
out releasing requirements (i) and (ii), we can yet say that
the third item appears less compelling and consider also the
motions of parts of large polyatomic molecules. Indeed, for
these latter species, rotamerization phenomena induced by
infrared laser excitations'’ take place in rare gas crystals.
The rotation is typically described, in this case, by a single
degree of freedom with relaxations governed by the sur-
rounding crystal. The solid environment could be roughly
represented by a limited number of effective atoms, which
interact predominantly with the rotating part of the mole-
cule. Simulation calculations on these larger systems for
which quantum mechanical methods are untractable would
probably provide useful semiquantitative informations on
the relaxation mechanisms.
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