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CHARACTERISTIC TIMES IN ONE DIMENSIONAL
COLLISIONS

J. G. MUGA, S. BROUARD, V. DELGADO and J. P. PALAO
Departamento de Fisica Fundamental y Exzperimental, Facultad de Fisica,
Universidad de La Laguna, Tenerife, Spain

Recent progress on the temporal characterization of one dimensional collisions by
our group in La Laguna and Vancouver is reviewed. Dwell times and their decom-
positions, arrival times, exponential decay, characteristic asymptotic behaviour at
large and short times, transient effects in tunnelling and anomalously short barrier
traversal times are discussed.

1 Scattering theory and time dependence

Collisions are intrinsically time dependent but the monographs on scatter-
ing theory pay a lot of attention to the solutions of the time independent
Schrodinger equation. This is in part because the traditional scattering exper-
iment, aimed at the obtention of cross sections, is performed in quasi-stationary
conditions and also because the stationary scattering states form a basis to an-
alyze the actual time dependent collision. However it is becoming more and
more important to consider explicitly the time dependence. Modern scatter-
ing experiments that incorporate femtosecond laser pulses make possible the
observation of wave packet motion and the design of particular initial states to
achieve specific dynamical behaviour. Also in semiconductor heterostructures
the transient regimes are of interest to determine the ultimate speed of the
devices. Scattering theory has to adapt to these new trends by developing
a formal language in the time domain where the full collision process, and
not just the asymptotic regimes and their connection, is taken into account?
Since the whole information contained in the wave function ¥(z,t) is difficult
to assimilate and hardly required this implies a synthesis effort to express the
important dynamical features with a few time parameters. Quantities to mea-
sure the duration of the collision, the arrival time at a detector, the life time
of an unstable state, the delay with respect to free motion, the characteristic
asymplotic behaviour (at short and large time) or the time required to fill a
region of space (e.g. to “charge” a well) or to achieve stationary conditions
have to be defined and their properties examined. When the collision involves
tunnelling the time dependence is particularly challenging. In addition to the

%1t is not true anymore that the interaction region is not interesting because it is not
observed. Precisely the goal of recent experiments in molecular dynamics is to observe the
transition state and understand the intimate mechanisms of chemical reactivity.
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time parameters mentioned above a traversal time for transmitted or reflected

wave packet components is of interest.
An important part of our recent work, reviewed here, has been devoted to

all these characteristic times of quantum collisions?

2 Dwell time and its separation into transmission and reflection
components

The standard measure of the duration of the collision is the sojourn, dwell or
mean collision time,

tq b
(@, bty ta; ¥) = / dt / dz [ (z, )2 (1)
1 71 a

Often a and b are chosen to cover the interaction region, ¢; is set to zero (an
initial preparation time) and t; = co. The interpretation of this quantity as a
mean time spent in the region [a, b] by the particle (with the average performed
over the members of the ensemble associated with ) is not straightforward.
In the standard interpretation of the quantum mechanical formalism there are
no trajectories and there is no obvious way to assign a time of presence to a
given member of the ensemble of particles associated with the quantum state.
There are however several formal arguments that provide (1) by extending to
the quantum case the classical dwell time (e.g. via Feynmann path integrals}
causal or Bohm trajectories? as an expectation value of a hermitian sojourn
time operator? or simply by using directly the classical expression for the dwell
time?). Irrespectively of a hypothetical detailed statistical interpretation of the
dwell time, our philosophy is to accept this quantity as a central characteristic
quantity of the state i that provides a reasonable definition of the duration
of the collision. An experimental determination of the dwell time by means of
a time-resolved photoluminescence technique with a picosecond laser has been
performed by Tsuchiya et al® The dwell time is an important parameter in
high speed applications of semiconductor structures®

There is abundant literature on the separation of the dwell time into
transmission and reflection components, possibly with interference terms. In
the stationary case it would read

7 = |T|?rr + |R|*rr + interference terms. (2)

bBecause of space limitations this is not a comprehensive review on the subject and the
reference list of related papers is far from complete. The interested reader may find however
a more detailed bibliography in the articles quoted.
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(where T and R are respectively transmission and reflection amplitudes) with
a similar relation for wave packets. This separation was initially one of our
major objectives.®":8:? Separations, in principle measureable, based on the flux
have been proposed}® and also based on projection operators. In quantum
mechanics this separation is not unique and in general the partial times 7r g
do not fulfill clessical conditions (such as additivity, reality or positivity). In
our opinion this is not necessarily a drawback if these quantities are shown to
contain useful information.

Two sets of complementary projectors are associated with the questions:
Is the particle in the region [a,3]? [D (yes), 1 — D (no)] and; Will the particle
be transmited? [P (yes), @ = 1— P (no)]. The dwell time is simple written as

/ ™ at (4| DI}, 3)

and can be decomposed by means of several resolutions of the projector D:3°

D = (P+Q)D=PD+QD=PDP+Q@QDQ+ PDQ+QDP (4)
= DPD+DQD = [P, Dy + 5:ilP, D] + 5[Q, Dls + 5:i(Q, DI,

that lead to different decompositions of the dwell time. These projectors pro-
vide a compact classification scheme for many of the proposed times and sim-
plify their connection and study!® The formalism also allows a probability
theory analysis in terms of conditional and marginal probabilities”:%:°

3 Arrival times

An important characteristic quantity is the arrival time at a detector. Allcock
many years ago denied the possibility of defining an arrival time in quantum
mechanics!! But the situation has changed drastically in the last few years
and there 1s now renewed interest in the subject. Allcock’s main objection was
based on the fact that his model of a detector (a step imaginary potential)
could not absorb the wave in a short spatial interval. But we have found con-
terexamples to Allcock’s claim, i.e., complex potentials that absorb in a broad
range of energies and occupy a small spatial interval® A systematic procedure
to construct potentials with the desired properties has been described12:13,14
To justify the expression proposed for the time of arrival [Eq.(6) below] an

“There is experimentl evidence of the existence of good enough absorbers: The agreement
between measured and calculated collisional cross sections.
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operational time of arrival is first defined based on the rate of absorption of
the complex potential that models the detector,

[ dtt(dN/dt)
(tin = [ dt (dN/dt) (5)

(N < 1is the norm.) A simple theoretical treatment then shows that for suf-
ficiently good detectors and asymptotic positions this quantitity is essentially
equal to the ideal time obtained from the flux J without complex potentiall?-13

Jo dt J(zy,t)t
[s° dtJ(zy,t)

(Ba(z1) = (6)

When the contribution of negative momenta in the initial state is negligible
the arrival time at £, > d can be expressed as an average of stationary phase
times (see Eq. (32) below);

1 o8]
030 = 5 [ oW OIPT@P (0, 20), )
where (T') is the transmission probability of the wave packet1%:16

4 Exponential decay. Short and long time behaviour

Resonant tunneling has become a major research field. Many theoretical ap-
proaches on the time dependence in resonant scattering are devoted to justify
the exponential decay. An ideal description of the decay of states influenced
by resonances would allow an understanding of both the dominant exponential
decay and the deviations from it. Progress in this direction has been achieved
by representing the survival amplitude A(t,v) = (¥(0)|¥(t)) as a discrete sum
over resonant terms!® The possibility of tayloring the effective interaction po-
tential for electronic motion in semiconductor structures !° makes feasible the
investigation of deviations from the exponential decay.

First the short time behaviour of the decay of the survival probability
S = |AJ? is discussed. Several authors have described a short time ¢2 depen-
dence of the decay probability Pyecay = 1 — S, see e.g. papers related to the
“quantumn Zeno paradox”. On the other hand a formal treatment and ex-
amples by Moshinsky and coworkers suggest a t1/2 dependence of the decay
probability at short times2%2! These two seemingly different claims are in fact
compadtible if one considers the possibility of initial states with infinite first or

second energy moments %23



The survival amplitude A(t,+) can be written in terms of the evolution

operator e H/A 49
Atw) = (e = o [ dgem () (8)
- 49 1
M@ = Lo ©)

where z = ¢2/(2m) is a complex energy and ¢ a complex momentum. The
contour C goes from —oo to +o0o passing above all of the singularities of the
resolvent due to the spectrum of H. Let us assume that the function M(q) can
be analytically continued into the lower half g—plane. M(q) has in general a
set of core singularities, depending only on the potential, plus possibly other
structural singularities depending on the particular state 3. Let us also assume
that a pole expansion of the form

M(g)=)
k

ax

i)’ Smag <0 (10)

is possible? Here k = 1,2,3 ... indexes the poles. It is useful to deform the
original integration contour to being along the diagonal D of the second and
fourth quadrants of the ¢-plane (steepest descent path). The poles ¢ crossed
on carrying out this deformation contribute to A(t) exponentially,

Ei(t) = ape~3/@mh) = g, o~ui (11)

where u = ¢/f is a convenient new variable which takes real values along D,

ur=qi/f, f=(@1-1)/(mh/t). (12)

Independently of being crossed or not crossed by the contour deformation,

all poles contribute because of the integral along the diagonal. Each pole

contribution is expressed in terms of a known function, the w-function?! as

Di(t) = —-a—;-sign(Suk) wisign(Sug)us). (13)

Combining the contributions,

At) = YIE(0) + Da(®)] = 3 san(-w). (14)
k

k

4Higher order poles can be treated in a similar fashion and an example of a more complex
case is described in section V.
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(Ex(t) = 0 for poles that have not been crossed when deforming the contour).
In the first form of (14), the exponential decay in E} is separated from the
“correction” Dj;. However the second compact expression is very useful for
studying the short time behaviour.

The Taylor series of the w—function 24 gives a series for A(t) in powers of
t1/2. This suggests a short time t'/2 dependence of the decay probability, as
claimed by Moshinsky and coworkers2%2! On the other hand, if we formally
expand the evolution operator, e *H*/» = 1 — iH t/h + ..., there results a tZ
dependence, '

Piccey = Sy (I W) ~ WIHISY) - (15)

However, the expectation values of H and/or higher powers of H may not exist.
Several behaviours are possible depending on the existence of these moments.
Let us consider the first two derivatives of A at time ¢t = 0 first from the
formal series of the evolution operator and then by assuming a general short
time dependence of the form A ~ 1+ bt°, where b and ¢ are finite constants,

dA —1 c—

Theo = T WVHIW) =betT (16)
dA? 1 —

T, = S =be(e— 1Y, (17)

If the first and/or second moments are infinite the possible values of c are
restricted. In particular, in the following table the behaviour described on the
right column is in principle possible when the condition on the left column 1s
satisfied

(lH|$p) =00 Paecay ~ t*/? (18)
(Y|H|¢) < o0 and ($|H?|¢p)) = 00 Piecay ~ t3/? (19)
(V|H|Y) < oo and (Y|H?|Y) < 00 Piecay ~ t° (20)

Examples where t1/ 2 t3/2 and t2 dominate the short time behaviour of Piecay
are provided in ref.[22]. It is shown that when the decay probability behaves as
t3/2 or t2 the coefficients for lower powers of ¢ vanish because of cancellations
between different pole contributions?®

The long time behaviour of the probability density in one dimensional
collisions is discussed next2® It is assumed for simplicity that there are no
bound states. The propagator in terms of the contour C in the complex mo-

mentum g¢-plane is given by

(@l ey = o [ aqr@einm, 2)
2 C



@) = Lel—Fl). (22)

Due to the exponential e~¥**/" in (21) the large ¢ behaviour is dominated by the
region around the origin (saddle point). Assuming that the resolvent matrix
element (z|(z — H)™!|z’) can be analytically continued into the lower half ¢-
plane (This is valid in particular for finite range potentials2?) and provided
that the analytically continued function is analytical at the origin it has a
Taylor series expansion If this is the case then I(0) = 0. Because of the (odd)
q factor in (22), the first term, ao, does not contribute to the integral (21).
The asymptotic formula for the propagator comes therefore from the second
term. Introducing again the variable u = ¢/ f and deforming the contour along
the steepest descent path,

(:ﬂ‘ _"Htlhl ,) : f3./d 2 —u? _ 1—: a mh 3/2 (23)
¢ ‘ omr t wie = Imym -\t )

So when I(0) vanishes a =3 asymptotic behaviour of the probability density
occurs. This can arise either via a cancellation between free and scattering
parts, i.e., I,(0) = —I;(0) # 0 or both terms can vanish separately, [,(0) =
1;(0) = 0. Examples of both cases are provided in ref. [26]. An exception
is the free motion on the full line. In this case the resolvent matrix element
diverges at the origin and I;(0) = —i/h # 0. The asymptotic behaviour of the
probability density for free motion on the full line is ¢~1.

5 Transient and asymptotic effects in tunnelling

A possible route to define a fundamental tunnelling time implies regarding
quantum mechanics as a statistical theory where the concept of particle tra-
jectory is a valid one22® But we don’t know at present if any of the hidden
variable theories is a faithful representation of reality. Instead of emphasizing
the particle, we may concentrate on the wave aspect of the quantum state and
look for a condensed description in terms of characteristic times. This simplifi-
cation is frequently achieved by means of asymptotic approximation methods.
Localizing the origin of the main contributions to the wave is not only of con-
ceptual interest, it also improves the efficiency of numerical calculations. The
simplest result in this direction is the asymptotic “phase time” that results
from applying the stationary phase approzimation. A more complete asymp-
totic analysis is based on deforming the contour integrals in order to single
out dominant contributions from critical points (poles, saddle points, branch
points)3 Stevens used this idea to examine a sequence of “tunnelling prob-
lems” involving a step potential barrier. His work has been later extended 3! —%°
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A clear limitation of asymptotic methods is their inability to deal with
non asymptotic situations. A second drawback of too simple an expansion is
known as “non uniformity”, a single asymptotic expansion may not be valid
for all values of the parameters involved. Another pitfall to be avoided is
the temptation to assign too much importance to “mathematical events” of a
particular critical point (for example, to the crossing of a pole by a steepest
descent path). The order of magnitude of the contribution of other critical
points can be similar (and its interference effect destructive) or larger.

We have recently overcome some of these difficulties by working out an
ezact solution of the dynamics that retains the basic philosophy of expressing
the wave function in terms of contributions from critical points3¢ Specifically
the collision of a state initially prepared as a “half plane wave”,

¥(z,0) = {h‘ll2 exp(ipoz/h), 2x2<0 (24)

0, otherwise,

with a square barrier from 0 to d and height Vj has been studied. This work
follows a series in the wake of Stevens 3! 3% but emphasizes and determines
quantitatively the role of resonances by means of resonance-decomposition
techniques!® Indeed, the contribution of the resonances is essential for the
description of the transient regime.

The basic formalism can be illustrated with the free motion case. This
problem was first solved by Moshinsky3” By expanding the evolution operator
in a plane wave basis the wave function is written as

1[)0(1:,15) =

i oo ei[pz—p’t/2m]/h .
As done before, the integration contour can be deformed to a —45° straight
line I'(t). The novelty now is that the saddle point of the exponent is at
p = mz/t so that the contour “moves”. For a fixed position = the saddle
point goes from oo to  as ¢ grows from 0 to oo, larger times being associated
with low momenta and shorter times with high momenta. At t. = mz/p,
the structural pole at py is crossed and for ¢ > {. the integration contour
['(t) includes a circle around the pole py. Alternatively, for fixed ¢, the pole
is crossed at . = pot/m. The crossing of the pole by the contour as ¢ (or
z) varies selects an instant (or coordinate) which describes approximately the
motion of the wave front, and assigns a velocity of propagation to that part of
the wave function. A crude approximation to the integral (25) retains only the
residue due to the deformation of the contour around the pole. This leads to
an approximate “step” wave function that keeps the shape of the original state
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but displaces the front with velocity po/m. A better approximation would
consider in addition the contribution of the saddle point. But since saddle and
pole do eventually coincide (as t or z vary), a special uniform expansion would
be required. Actually the integral can be carried out exactly by completing
the square in the exponential and using the variable u = ’%"—“'iﬁ. Then, Eq.

(25) and the contour deformation lead to

gimz” [2th
Yo(=,t) = ~Spi w(—up)  uo = (po— mz/t)/f; (z,t>0). (26)

This expression incorporates all the information including the situations before,
at and after the crossing and the wave front shape is exactly described. An
interesting property of the w—function is w(—ug) = 2e~% — w(ug). After
the crossing the exponential is the part that one would get from the residue.
The w(ug) term corrects this crude estimate. u3 is purely imaginary and
the exponential does not decay with time while w(ug) does decay At fixed z,
u? ~ ip3t/2mh as t — co and a stationary regime with constant probability
density is reached. However, when the poles have a negative imaginary part,
as discussed next, the exponential contribution from the residue decays.

The solution at time ¢ > 0 of the Schrodinger equation for the square
barrier can be written in integral form by following similar steps as for the free

case,
wra) = g [ TEE B GH0) (>d),  (27)

where for negative p, T(p) is the analytical continuation of the (positive p)
transmission amplitude. (In spite of its simplicity the derivation and meaning
of this equation are are non-trivial3%)

A similar analysis to the one leading to (27) is possible for the barrier
region, 0 < z < d. Because of the rapid oscillations of the integrand these
integral expressions are difficult to evaluate numerically, so we look for an
alternative integration contour in the complex momentum plane which allows
to obtain 1(z,t) efficiently and to express the result as a sum of contributions
from a set of critical points.

For z > d, the integrand is considered as a function of the complex variable
p and the contour is deformed into a straight —45° line crossing the real axis at
the stationary point p = m[z+ hda/dp|,,]/t (o is the phase of the transmission

amplitude, T(p) = |T(p)|e'®), plus circles around each of the poles that have

p—m[3+hda/dp|l’ﬂm one obtains
J

been “crossed”. Using the variable u =

Yr(z,t) = f emierndoldrlnl/ne ] dugr(u)e ™, (28)
Ty
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where the function gr(u) is meromorphic and has resonant poles in the lower
p—plane.

At small times and when the saddle at u = 0 is far from the nearest pole
the saddle is the only important critical point. In this case gr can be expanded
in a power series around u = 0 and the resulting series can be integrated term
by term? An asymptotic formula for the probability density at the front tail
may be obtained by retaining the first term,

t
dmu2g?

[¥(z, )2 ~ (z/t = 00), (29)
which is actually the same expression obtained for free motion/ However,
when the contour moves closer to the poles the above method is useless. The
way out is to extract explicitly the singularities of g due to the resonant poles
(from j = 1 to j = co) and the structural pole (j = 0), leaving the remainder

as an entire function hr(u),

gr(u) =
j=0

where u; = f~! {p; — m[z + hda/dplp,)/t} and A; is the residue of gr(u) at
v = u; . Finally, using the w—functions, ¢¥r(z,t) can be written as

Aj
T+ () (30)

Yp(z,t) = feim[z+ﬁda/dpl,olnl2m a1
2 o
x| =im ) A "’(‘“j)+/ hp(u)e ™ duf .
Jj=0 —00

Since hp is an entire function it has an infinite power series with infinite con-
vergence radius and the integral can be expressed in terms of its only critical
point, the saddle at 4 = 0. An excellent (“uniform”) approximation in the full
range of times and/or positions is obtained by keeping only the first term in
this series. In summary, ¥7(z,t) can be written as an explicit sum over
critical points: Resonances, the structural pole, and the saddle. In
our calculations two or three summands are enough to accurately follow the
propagation even at short (non asymptotic) times.

A velocity of propagation v; = [Re (p;j) + Im (p;)]/m can be assigned to
each pole contribution by the condition for the crossing of each pole p; by

¢The radius of convergence of the series for g is the distance from u = 0 to the nearest
pole.

fFrom another viewpoint this is to be expected since high momentum components behave
classically *® and the free motion of a wave packet can be mimicked classically
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the contour [Im (u;) = 0]. The term associated with a pole p; is observed or
not in the shape of the wave function depending on the value of A; and on
the interferences taking place between the different contributions. As a crude
estimate, the residue for po has the step shape whereas the residues associated
with p; (7 > 0) decay as z decreases, due to the negative imaginary part of p;.

After crossing each pole the contributions decay with time except for j = 0.
After having crossed all poles the dominant contribution is w(—ug). The only
remaining term in the strict ¢ — oo limit is the residue associated with w(—ug).

For 0 < z < d the analysis is more complex but it follows similar lines.
Because the structural pole p) = (p3 — 2mV;)'/? is now located in the posi-
tive imaginary axis, and z is bounded by d it is much easier now than in the
transmission region that several critical points contribute simultaneously. Rec-
ognizing individual contributions in the total wave becomes impossible because
of the interference effects. However, as time increases all contributions except
the one from the structural pole decay so the wave function in the barrier can
be eventually expressed by a single w—function.

Following similar crude estimates for the main front and resonance fore-
runners in the transmission region we might try to estimate the wave inside the
barrier by the contribution from the residue at the structural pole. This residue
gives an attenuated exponential function whose wave front would moves with
the “semiclassical velocity” v, = (2mVp — p3)!/2/m. However, the front pre-
dicted by this contribution3? is not seen, even approximately, in the real wave.
Stevens considered the same initial condition used in this work but an infinitely
wide square barrier {a potential step), and claimed that the concept of signal
velocity was still valid for the tunnelling regime in the barrier region. It was
later showr® that this velocity is actually unobservable in the tunnelling case
because of the important contribution of the saddle. In our case in addition
to the saddle, the branch point and the resonances preclude the identification
of a wave front. One of the consequences is that the semiclassical time d/v, is
a poor indication of the “charging or build-up time”, a time scale indicating

the rate at which the maximum probability is achieved within the barrier3®
- Also, since the crossing of some of the resonant poles occurs (within the bar-
rier} after the structural pole in the imaginary axis has been crossed, d/v,
has little to do with the time required to achieve the stationary regime within
the barrierd The resonance pole crossings (plus the corresponding exponential
decays) determine the relevant time scale for the approach to the stationary
regime.

9This time is however relevant when a second degree of freedom is coupled to the trasla-

tional motiontt
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6 Anomalously short tunnelling times

One particularly intriguing aspect of the dynamics of collisional tunnelling is
that some of the proposed definitions for the tunnelling time imply anomalously
short durations for the barrier traversal. This occurs for example in the so
called “extrapolated stationary phase times”. For packets with a well defined
momentum the point of stationary phase of the integrand of the transmitted
packet arrives at z; > d at time

Too (20, 21) = =[(&1 ~ 20) + hda/dplp=pa], (32)

where zg 1s the center of the initial packet. It is tempting to extrapolate and
interpret

Toxt = —old + hda/dplp=po], (33)
as a “transversal time” across the barrier. For large enough barriers 75X
becomes independent of the barrier length. (This is the Hartman effect*°) The
above interpretation however rests on the assumption that the packet evolves
“freely” out of the barrier region (0,d). But wave packets with a well defined
momentum are broad in coordinate representation and are severely deformed
both before the hypothetical “entrance” instant te,, = |2o|m/po and after the
“escape” Instant tese = tent + T;:t. For arbitrary packets, a common procedure
is to define the entrance and escape times by extrapolating the asymptotic free
motion of the peaks or centroids of the ingoing and transmitted packets up to
their crossing with the barrier edges. But the same type of criticism applies®

Instead of associating the position of the particle with a particular feature
of the packet, such as the peak, we prefer to take seriously the statistical inter-
pretation of the wave function and define averages. For the “escape” instant
we average the time of arrival using the flux of particles as a distribution of
passage times. As discussed before this ideal time, (t)s, is essentially coinci-
dent with an operational time {t) defined in terms of an absorbing detector.
A proper definition of the entrance time into the barrier is also required. How-
ever, this turns out to be more involved since the conditions that allow the
approximate equality (t)x = (t); do not generally hold in this case. Moreover
there is the serious objection that the flux at this point involves both “to be
transmitted” and “to be reflected” amplitudes. Actually the “to be reflected”
component becomes dominant for wide enough barriers*? Selection of the pos-
itive part of the flux alone does not solve this conceptual difficulty. Moreover

hThere are examples where the transmitted packet emerges before the incident peak has
arrived at the left edgel!
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there are many definitions of “positive flux” 2> A reasonable compromise con-
sists in localizing the initial wave packet close enough to the left edge of the
barrier with a small spatial width compared to the barrier lenght d, in such a
way that one can identify the entrance and the preparation instant within a
tollerable small uncertainty’ However Low and Mende have shown *® that due
to this localization the “usual wave packet analysis”, which makes use of the
the passage of the peak of undeformed packets to determine the traversal time,
fails due to the incompatibility of a series of conditions: (I) |zo| << d. (II)
Negligible contribution to the initial wave packet of negative momentum com-
ponents; (II1) Negligible penetration through the barrier in the initial packet
in comparison with the transmission probability; (IV) In order to follow un-
ambiguously the peak position of the wave packet it must propagate without
appreciable deformation with respect to the incident packet. This implies low
momenta, py << py, where p, = (2mV;)!/2 is the barrier height in momentum
units; (V) [T(p)(p [$(0))lp=po >> IT(2)(p [$(0))|p=p, is also imposed in ref.[45]
to assure that expansions around po can be made.

Low and Mende speculated that, under conditions I-IV, the transmitted
part of the wave packet would be dominated by momentum components with
energies above the barrier height. The eventual dominance of over the barrier
components for wide enough barriers was already noted by Hartman®® In the
recent literature on the Hartman effect this fact has been frequently ignored,
perhaps because it is not directly evident from the expression (33) which refers
to a single plane wave momentum and not to a real wave packet. The critical
barrier length, d., where the transition between tunnelling and over the barrier
motion takes place is given by %48

1/2 2

(P — po)? / K1/2
d. ~ [ ———— . (34)

»+po 2(Ap)
where Ag is the momentum variance of the initial wave packet. Using the
conditions I-IV and comparing with (34), one finds that d >> d. as speculated
by Low and Mende. However, it has been pointed out *® that I and III are well
motivated on physical grounds but the other conditions are too severe since
they are imposed to assure the applicability of the formalism used. Actually

the arrival time analysis based on Eq.(6) does not require any predetermined
form for the arriving wave packet, 1.e., it does not require conditions IV and

'A possible solution proposed to the paradox of rapid transmission has been the as-
sociation of the transmitted peak with the front of the incident wave packet. However in
standard quantum mechanics the concept of point to point influence is far from simple2” The
localization imposed in our approach circunvents the problem of associating the transmitted
particles with a particular region of the initial packet.
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II. The question then is if the conclusions by Low and Mende are valid for
less restrictive conditions and if their speculation is founded. By imposing
only the conditions I and III a systematic numerical calculation shows that for
initial states localized close enough to the barrier to permit an accurate trans-
mission time measurement, the process is also dominated by over the barrier
transmission2® Similar conclusions are drawn from a two detector model, one
before and one after the barrier, when the first detector has a small spatial
width 43

7 Concluding remark

Time is always problematic in quantum mechanics and in particular in scat-
tering theory it has been traditionally relegated to a secondary role. There
is nowadays a need to develop a new language emphasizing time dependence
which incorporates different characteristic quantities that summarize the essen-
tial features of the wave dynamics. (The complexity of a quantum mechanical
collision, and in particular of collisional tunnelling cannot be trapped with a
single quantity unless one is interested in a very specific aspect.) Steps towards
this goal have been reviewed.

Acknowledgments

This article is dedicated to R. F. Snider in his 65th aniversary. We are indebted
to R. F. Snider, R. Sala, G. W. Wei, D. Macias and H. Cruz. They have worked

out part of the material reviewed. Support by Ministerio de Educacion y
Ciencia (Spain) (PB 93-0578) is acknowledged.

References

1. D. Sokolovski and J. N. L. Connor, Phys. Rev. A 44, 1500 (1992).

2. C. R. Leavens and G. C. Aers, in Scanning tunneling microscopy I1I, ed.
by R. Wiesendanger and H. J. Gintherodt (Springer, Berlin, 1993), pp.
105-140.

. W. Jaworski and D. M. Wardlaw, Phys. Rev. A 40, 6210 (1989).

. J. G. Muga, S. Brouard and R. Sala, Phys. Lett. A 167, 24 (1992).

5. M. Tsuchiya, T. Matsusue and H. Sakaki, Phys. Rev. Lett. 59, 2356

(1987).
6. H. Mizuta and T. Tanoue, The Physics and Applicalions of Resonant
Tunnelling Diodes, (Cambridge 1995).

W G



12.
13.

14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.

25.

26.
27.
28.
29.

30.

J. G. Muga, S. Brouard and R. Sala, J. Phys.: Condensed Matter 4,
L579 (1992).

. S. Brouard, R. Sala and J. G. Muga, Europhysics Letters 22, 159 (1993).
. S. Brouard, R. Sala and J. G. Muga, Phys. Rev. A 49, 4312 (1994).

10.
11.

C. R. Leavens, Phys. Lett. A 197, 88 (1995).

G. R. Allcock, Ann. Phys. (NY) 53, 253 (1969); Ann. Phys. (NY) 53,
286 (1969); Ann. Phys. (NY) 53, 311 (1969).

S. Brouard, D. Macias and J. G. Muga, J. Phys. A 27, L439 (1994).

J. G. Muga, S. Brouard and D. Macias, Ann. Phys. (NY) 240, 351
(1995).

D. Macias, S. Brouard and J. G. Muga, Chem. Phys. Lett. 228, 672
(1994).

J. G. Muga and R. F. Snider, Phys. Rev. A 45, 2940 (1992).

J. G. Muga, S. Brouard and R. F. Snider, Phys. Rev. A 47,6075 (1992).
J. G. Muga and H. Cruz, Physice B 179, 326 (1992).

G. Garcia Calderén, J. L. Mateos and M. Moshinsky, Phys. Rev. Lett.
74, 337 (1995).

H. Cruz and J. G. Muga, Phys. Rev. B 45, 11885 (1992)

M. Moshinsky, Phys. Rev. 84 (1951) 525.

G. Garcia Calderén, G. Loyola and M. Moshinsky, in Symmeiries in
Physics, edited by A. Frank and K. B. Wolf (Springer-Verlag, Berlin,
1992), p. 273.

J. G. Muga, R. F. Snider and G. W. Wei, Furophysics Letters 35, 247
(1996).

J. G. Muga, G. W. Wei and R. F. Snider, Annals of Physics (NY), to
appear.

M. Abramowitz and I. A. Stegun, Handbook of Mathemalical Functions
(Dover, New York, 1972).

We are presently investigating the relation between the short time be-
haviour-of these models and previous results by Prof. L. A. Khalfin. See
e.g. L. A. Khalfin Zh. Eksp. Teor. Fiz. 33, 1371 (1957), Engl. trans.
Sov. Phys.-JETP 6, 1053 (1958).

J. G. Muga, V. Delgado and R. F. Snider, Phys. Rev. B 52, 16381
(1995).

M. S. Marinov and B. Segev, J. Phys. A 29, 2839 (1996).

R. Sala, S. Brouard, and J. G. Muga, J. Chem. Phys. 99, 2708 (1993).
J. G. Muga, R. Sala and S. Brouard, Solid state Commun. 94, 877
(1995). (Errata available from authors.)

K. W. H. Stevens, Eur. J. Phys. 1, 98 (1980); J. Phys. C: Solid State
Phys. 16, 3649 (1983).



49

31. A. P. Jauho nd M. Jonson, Superlatiices and Microstructures 6, 303
(1989).

32. P. Moretti, Phys. Rev. A 46, 1233 (1992).

33. N. Teranishi, A. M. Kriman and D. K. Ferry, Superlattices and M-
crostructures 3, 509 (1987).

34. A. Ranfangi, D. Mugnai and A. Agresti, Phys. Lett. A 158, 161 (1991).

35. M. Kleber, Phys. Rep. 6, 331 (1994).

36. S. Broua.rd and J. G. Muga, Phys. Rev. A, to appear.

37. M. Moshinsky, Phys. Rev. 88, 625 (1952).

38. J. G. Muga, J. Phys. A 24, 2003 (1991).

39. J. A. Stovneng and E. H. Hauge Phys. Rev. B 44, 13582 (1991)

40. T. E. Hartman, J. Appl. Phys. 33, 3427 (1962).

41. R. Landauer and T. Martin, Solid .S'tate Commun. 84 (1992), 115.

42. V. Delgado, S. Brouard, J. G. Muga, Solid State Commun. 94, 979
(1995).

43. J. G. Muga, V. Delgado, R. Sala and R. F. Snider, J. Chem. Phys. 104,
7015 (1996).

44. M. Biittiker and R. Landauer, Phys. Rev. Lett. 49, 1739 (1982); E.
Pollak, J. Chem. Phys. 83,1111 (1985); E. H. Hauge and J. A. Stovneng,
Rev. Mod. Phys. 61, 917 (1989).

45. F. E. Low and P. F. Mende, Ann. Phys. (NY) 210, 380 (1991).

46. V. Delgado and J. G. Muga, Ann. Phys. (NY) 248, 122 (1996).

47. R. Sala, S. Brouard and J. G. Muga, J. Phys. A 28, 6233 (1995).

48. J. P. Palao, S. Brouard and J. G. Muga, in preparation.



