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Weak-coupling-like time evolution of driven four-level systems in the strong-coupling regime

Vicente Delgado and J. M. Gomez Llorente
Departamento de Fı´sica Fundamental II, Universidad de La Laguna, 38205-La Laguna, Tenerife, Spain
~Received 21 January 2002; revised manuscript received 28 February 2003; published 14 August 2003!

It is shown analytically that there exists a natural basis in terms of which the nonperturbative time evolution
of an important class of driven four-level systems in the strong-coupling regime decouples and essentially
reduces to the corresponding time evolution in the weak-field regime, exhibiting simple Rabi oscillations
between the different relevant quantum states. The predictions of the model are corroborated by an exact
numerical calculation.
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I. INTRODUCTION

The dynamical behavior of quantum systems driven
external time-dependent fields has attracted considerabl
terest in recent years due, in part, to the great variety
phenomena that have been theoretically predicted and
perimentally observed when the system conditions are c
veniently chosen@1–3#. For instance, in the field of quantum
optics the quantum-interference effects induced by the co
ent external fields can lead to phenomena such as coh
population trapping@4# ~even in the nonperturbative regim
@5#!, electromagnetically induced transparency@6#, or lasing
without inversion@7#. In atomic systems, an external las
field can induce interesting processes such as harmonic
eration@8# and multiphoton excitation and ionization@9#.

The theoretical treatment of a quantum system expose
a strong time-dependent field requires specific nonpertu
tive methods. The first comprehensive theoretical study
the effects of a strong oscillating field on a two-level qua
tum system was carried out by Autler and Townes@10#, who
using Floquet’s theorem@11# derived a solution in terms o
infinite continued fractions to investigate the effect of a
field on theJ52→1 l-type doublet microwave absorptio
lines of molecules of gaseous OCS, obtaining good ag
ment with experimental results. In another important pap
Shirley @12# also used the Floquet theorem to develop a g
eral formalism for treating periodically driven quantum sy
tems. Using this formalism, which replaces the solution
the time-dependent Schro¨dinger equation with the solution o
a time-independent Schro¨dinger equation represented by a
infinite matrix, he obtained closed expressions for tim
averaged resonance transition probabilities of a stron
driven two-level system. More recently, a variety of a
proaches have been proposed to deal analytically w
strongly driven two-level systems@13–19#. Three- and four-
level systems driven by intense laser fields have also b
treated analytically@5,20#.

In the numerical description of realistic multilevel atom
and molecules in intense laser fields, the Floquet theory
more recently, theR-matrix Floquet approach@21# have also
proved to be particularly useful. These formalisms have b
used in studies of atomic spectroscopy@22#, laser-assisted
electron-atom scattering@23#, harmonic generation@24#, pe-
riodically kicked Rydberg atoms@25#, and multiphoton exci-
tation and ionization of atoms and molecules@26–30#.
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In this work we are interested in an important class
driven four-level systems. Specifically, we consider a fo
level system consisting of two doublets~see Fig. 1!. This
system has been previously studied in the context of cohe
population transfer@31# and tunneling dynamics@20#. In the
present work, we will show that there exists a natural basi
terms of which the nonperturbative time evolution of t
system in the strong-coupling regime decouples and es
tially reduces to the corresponding time evolution in t
weak-field regime.

The splittings of the two lower states (u1&,u2&) and the
two upper states (u3&,u4&) will be denoted asD08 and D09 ,
respectively. These splittings are much smaller than the s
ration D between the doublets. Such a level configuration
commonly encountered in quantum double-well potentia
which in turn are relevant in the description of numero
processes in molecular and solid-state systems. For insta
this model can describe the tunneling dynamics of the inv
sion mode of the ammonia molecule@1,32#, intermolecular
proton transfer processes@33#, or the effect of a driving laser
field on the tunneling dynamics of low-lying electrons

FIG. 1. Energy diagram and coupling constants of the four-le
system considered in the present work.
©2003 The American Physical Society03-1
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quantum semiconductor heterostructures@34,35#.
The external periodic field~of amplitudeE and frequency

v) will induce transitions between statesu1&↔u2&,
u3&↔u4&, u1&↔u4&, andu2&↔u3&, with corresponding cou-
pling constantsV12, V34, V14, and V23, where V i j
[E m i j andm i j is the dipole matrix element between stat
u i &↔u j &. The Hamiltonian of the system reads

H5(
i 51

4

Eis i i 2V12cos~vt !~s121s21!

2V34cos~vt !~s341s43!

2V14cos~vt !~s141s41!

2V23cos~vt !~s231s32!, ~1!

wheres i j [u i &^ j u is the transition operator,Ei is the energy
of stateu i & in the absence of the periodic force, and we ta
\[1 throughout the paper.

We shall assume that, as is usually the case, the di
matrix elementsm i j between states lying within a given dou
blet are much larger than the corresponding dipole ma
elements connecting states lying in different doublets. Un
these circumstances, the states within a doublet are m
more strongly coupled by the external field than those ly
in different doublets, i.e.,V12,V34@V14, V23. If the driving
field is quasiresonant with the allowed transitions betwe
the lower and upper doublets (v'D) and weak enough so
that any coupling constantV i j is much smaller than fre
quencyv ~weak-coupling regime!, the contribution of the
far-off-resonant transitionsu1&↔u2& and u3&↔u4& turns out
to be negligible. Under these conditions one can invoke
rotating wave approximation~RWA! and the dynamical evo
lution of the system becomes governed by a Hamilton
which, in the rotating frame, takes the simple formH8
5H148 1H238 with

H148 [E1s111~E42v!s442
V14

2
~s141s41!, ~2!

and a similar expression forH238 replacing 1→2 and 4→3.
Thus, in the weak-field regime, the time evolution consists
usual Rabi oscillations betweenu1&↔u4& and u2&↔u3&. As
the strength of the external field increases, the contribu
of the strong nonresonant transitionsu1&↔u2& and u3&↔u4&
becomes increasingly important so that, eventually, the
tem enters an interesting regime in which the intradoub
transitions become strong while the corresponding interd
blet transitions remain weak. This is a nonperturbat
strong-coupling regime where the RWA is no longer va
and one has to deal with two weak and two strong tran
tions. Under these circumstances, all the states bec
coupled and the dynamical evolution becomes, in gene
rather involved. As we will show, there exists, however
natural basis in terms of which the time evolution of t
system is essentially the same in both the perturbative
nonperturbative regimes. Thus, this basis provides a un
description of the weak- and strong-coupling regimes.
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Our approach is not directly based on the Floquet theo
rather it relies on a suitable time-dependent unitary trans
mation which allows the~intradoublet! strong contributions
to be conveniently absorbed into renormalized physical
rameters. However, a connection can be established betw
these two approaches. Floquet states and quasiener
which are, respectively, the eigenstates and eigenvalue
the Hermitian operator (H2 i ]/]t), become in the time-
independent case indistinguishable from the usual station
states and energies. Thus, if one performs, as we shall d
unitary transformationU(t) to a rotating frame in which the
transformed Hamiltonian becomes, to a good approximat
time-independent, then finding the Floquet states reduce
the straightforward task of diagonalizing the rotated Ham
tonian and transforming back to the original frame by app
ing U1(t). As we shall see later on, the natural basis wh
provides a unified description of the weak- and stron
coupling regimes is nothing but the basis of Floquet sta
associated with a zeroth-order Hamiltonian obtained fr
the original Hamiltonian~1! by decoupling the two doublets
i.e., by takingV14,V23→0.

II. ANALYTIC MODEL

We start by performing the time-dependent unitary tra
formation

U~ t !5expS i E
0

tF(
i 51

4
1

2
~E11E2!s i i 1v~s331s44!

2V12cos~vt8!~s121s21!

2V34cos~vt8!~s341s43!Gdt8D . ~3!

This transformation, which in particular translates the zero
energy to the point (E11E2)/2, enables us to absorb th
most rapidly oscillating terms of Hamiltonian~1! and leads,
after some lengthy algebra, to the following rotated Ham
tonian:

H85~D08/2!$cos@2f8~ t !#~s222s11!1 i sin@2f8~ t !#

3~s212s12!%1~D09/2!$cos@2f9~ t !#~s442s33!

1 i sin@2f9~ t !#~s432s34!%1~D2v!~s331s44!

2
1

2
~V141V23!cos~vt !$e2 ivt

„cos@f2~ t !#~s231s14!

2 i sin@f2~ t !#~s131s24!…1H.c.%

2
1

2
~V232V14!cos~vt !$e2 ivt~cos@f1~ t !#~s232s14!

2 i sin@f1~ t !#~s132s24!!1H.c.%, ~4!

with
3-2
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f8~ t !5~V12/v!sin~vt !, ~5a!

f9~ t !5~V34/v!sin~vt !, ~5b!

f6~ t !5f8~ t !6f9~ t !. ~5c!

Next, we express the time-dependent coefficients ofH8 as a
series of Bessel functionsJn by using expansions@36#
il-

02250
cos@z sin~vt !#5J0~z!12(
n51

1`

J2n~z!cos~2nvt !, ~6a!

sin@z sin~vt !#52(
n50

1`

J2n11~z!sin@~2n11!vt#. ~6b!

This enables us to write Hamiltonian~4! as a sum of a domi-
nant constant contributionH08 and an oscillating time-
dependent partH18(t), with
H085
1

2
D08

R~s222s11!1
1

2
D09

R~s442s33!1~D2v!~s331s44!2
1

2
V14

R ~s141s41!2
1

2
V23

R ~s231s32!, ~7!

H18~ t !5D08(
n51

1`

J2n~z8!cos~2nvt !~s222s11!1 iD08(
n50

1`

J2n11~z8!sin@~2n11!vt#~s212s12!

1D09(
n51

1`

J2n~z9!cos~2nvt !~s442s33!1 iD09(
n50

1`

J2n11~z9!sin@~2n11!vt#~s432s34!

2
1

2
~V231V14!@xc~z2!~s231s14!2 ixs~z2!~s131s24!1H.c.#2

1

2
~V232V14!@xc~z1!~s232s14!

2 ixs~z1!~s132s24!1H.c.#, ~8!
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wherez8[2V12/v, z9[2V34/v, andz6[ 1
2 (z86z9). The

renormalized splittingsD08
R, D09

R, and Rabi frequencies
V14

R ,V23
R are field-dependent quantities defined asD08

R

5D08J0(2V12/v), D09
R5D09J0(2V34/v), V14

R 5V1
R , and

V23
R 5V2

R with

V6
R 5vH V141V23

V122V34
J1S V122V34

v D
6

V142V23

V121V34
J1S V121V34

v D J , ~9!

and the coefficientsxc(z) andxs(z) are defined by

xc~z!5
1

2
e22ivt$J0~z!1e22ivtJ2~z!%

1 (
n51

1`

$11~12dn1!e22ivt%J2n~z!cos~2nvt !,

~10a!

xs~z!5~11e22ivt! (
n50

1`

J2n11~z!sin@~2n11!vt#,

~10b!

wheredn1 is the Kronecker delta.
The important point is that the contribution of the osc

lating HamiltonianH18(t) to the dynamical evolution of the
system becomes negligible and can be safely neglected u
rather general conditions. To see this, we write the evolut
operator associated withH8(t)5H081H18(t) as the perturba-
tive expansion

U8~ t,0!5e2 iH 08tH 12 i E
0

t

dt8eiH 08t8H18~ t8!e2 iH 08t81•••J .

~11!

It can be easily seen that the integral on the right-hand s
of Eq. ~11! is a sum of terms of the orders ofD08/v, D09/v,
V14/v, andV23/v. Thus, for a driving field quasiresonan
with the transitions between the lower and upper doub
(v'D@D08 ,D09) and weak enough so that the Rabi freque
cies of the weak transitions (V14,V23) remain small com-
pared tov, the contribution ofH18(t) can be legitimately
neglected. This approximation is applicable regardless of
value of the coupling constantsV12 andV34 and, therefore,
is valid in both the perturbative and nonperturbative regim
In particular, in the weak-field regime it leads to the sam
results as the usual RWA and, consequently, can be con
ered as a nonperturbative generalization of the latter. Un
the above conditions, the dynamical evolution becomes g
erned by HamiltonianH08 which, by defining renormalized
energiesE1

R52D08
R/2, E2

R5D08
R/2, E3

R5D2D09
R/2, andE4

R

5D1D09
R/2, takes the same form as the weak-field Ham

tonian previously considered. Specifically, one obtainsH8
5H148 1H238 with
3-3
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H148 [E1
Rs111~E4

R2v!s442
V14

R

2
~s141s41!, ~12!

and a similar expression forH238 replacing 1→2 and 4→3.
The Schro¨dinger equation associated withH8 can be now
readily solved analytically to obtain the nonperturbative g
eral solution in the rotating frame

uc8~ t !&5(
i 51

4

ci8~ t !u i &, ~13!

with probability amplitudesci8(t) given by

c18~ t !5H c18~0!cosS V̄14
R

2
t D 1

i

V̄14
R

@c18~0!d14
R

1c48~0!V14
R #sinS V̄14

R

2
t D J e2 i (d14

R /21E1
R)t, ~14a!

c28~ t !5H c28~0!cosS V̄23
R

2
t D 1

i

V̄23
R @c28~0!d23

R

1c38~0!V23
R #sinS V̄23

R

2
t D J e2 i (d23

R /21E2
R)t, ~14b!

c38~ t !5H c38~0!cosS V̄23
R

2
t D 2

i

V̄23
R @c38~0!d23

R

2c28~0!V23
R #sinS V̄23

R

2
t D J ei (d23

R /22E3
R

1v)t,

~14c!

c48~ t !5H c48~0!cosS V̄14
R

2
t D 2

i

V̄14
R @c48~0!d14

R

2c18~0!V14
R #sinS V̄14

R

2
t D J ei (d14

R /22E4
R

1v)t,

~14d!

where we have defined field-dependent renormalized de
ings d14

R 5E4
R2E1

R2v andd23
R 5E3

R2E2
R2v, and renormal-

ized generalized Rabi frequenciesV̄14
R 5A(V14

R )21(d14
R )2

and V̄23
R 5A(V23

R )21(d23
R )2. The interesting point is tha

while the system dynamics in the strong-field regime is
general rather complicated, when viewed from the rotat
frame it becomes essentially the same as that of the w
field regime. The same result holds true in the original n
rotating frame by the proper choice of the relevant ba
Indeed, by transforming back one obtains

uc~ t !&5U1~ t !uc8~ t !&5(
i 51

4

ci8~ t !U1~ t !u i &, ~15!
02250
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and from this general solution one immediately sees that
probability amplitudes associated with the field-depend
statesu i 8(t)&[U1(t)u i & are precisely those given in Eqs
~14a!–~14d!. It is therefore clear that the renormalize
u i 8(t)& states constitute the natural basis to analyze the t
evolution of the system. In fact, when the system dynam
is analyzed in terms of such states the nonperturbative eff
induced by the strong driving field can be absorbed into
redefinition of the relevant energies and Rabi frequencie
such a way that the system evolves obeying the same Ha
tonian in both the perturbative and nonperturbative regim

In terms of the original basis, states$u i 8(t)&% take the
form

u18~ t !&5cosf8~ t !u1&1 i sinf8~ t !u2&, ~16a!

u28~ t !&5 i sinf8~ t !u1&1cosf8~ t !u2&, ~16b!

u38~ t !&5e2 ivt@cosf9~ t !u3&1 i sinf9~ t !u4&], ~16c!

u48~ t !&5e2 ivt@ i sinf9~ t !u3&1cosf9~ t !u4&]. ~16d!

These states constitute a basis of the extended Hilbert s
of t-periodic state vectors@37#. In fact, as already mentioned
they are the Floquet states associated with the zeroth-o
Hamiltonian obtained from the original Hamiltonian~1! by
decoupling the two doublets, i.e., by takingV14,V23→0.
This follows from the fact that, in such a case, the states$u i &%
become the eigenstates of the rotated HamiltonianH85H148
1H238 @see Eq.~12! and below#.

Note that in the weak-field regime one hasf8(t),f9(t)
!1 for any t and as a consequenceu i 8(t)&→u i &, so that the
renormalized basis becomes indistinguishable from the or
nal one. Similarly, taking into account thatJ0(x)→1 and
J1(x)/x→1/2 asx→0, it follows that in such a regime the
renormalized energies and Rabi frequencies approach
corresponding bare values, so that, in the weak-field regi
the above formulation simply reduces to the usual one. In
strong-field regime, however, the time evolution of the d
ferent bare states becomes strongly coupled by the driv
field and, as a consequence, it can be rather involved
very different from that occurring in the weak-field regim
In contrast, the time evolution of the renormalized states
mains always as simple as in the weak-field regime, cons
ing of Rabi oscillations betweenu18(t)&→u48(t)& and
u28(t)&→u38(t)&.

III. NUMERICAL RESULTS

To verify the predictions of the analytic model abov
next we perform an exact numerical calculation. We consi
a quantum particle in a quartic double-well potential driv
by an external periodic field of frequencyv ~see Fig. 2!.
Since this potential approaches an infinite value at large
tancesx→6`, it only admits bound eigenstates@38#. Con-
sequently, there is no continuum spectrum and such a m
is only adequate for describing physical systems at ener
well below the continuum threshold.

Using convenient dimensionless variables, the cor
3-4
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sponding Hamiltonian can be cast in the form@39#

H5
p̂2

2
2

x̂2

4
1

x̂4

64D
2l x̂ cosvt. ~17!

The dimensionless parameterD determines the barrie
height and corresponds, approximately, to the number
doublets below the top of the barrier. In the present study,
take D54. The frequency of the external field has be
tuned to the transitions between the first and third doubl
Specifically, we have takenv5(E62E1), with Ei being the
energy levels in the absence of the driving field. The dim
sionless field intensityl, on the other hand, has been chos
to satisfy the strong-coupling conditionV12/v51, where
V125l^1ux̂u2& ~see below!.

To establish a more clear connection with the formali
of the previous sections, it is convenient to rewrite Ham
tonian~17! in terms of a basis set$u i &% of eigenstates of the
quartic oscillator. We have obtained these eigenstates
merically by diagonalization in another truncated basis
$uwn&% of harmonic-oscillator wave functions with a conv
niently optimized frequency, following the procedure of R
@40#. In this way, one gains a complete knowledge of t
statesu i &5(n^wnu i &uwn& by determining the numerical coe
ficients ^wnu i &.

In terms of the quartic-oscillator eigenstates, Hamilton
~17! takes the form

H5(
i , j

u i &^ i uHu j &^ j u5(
i

Eis i i 2l cosvt(
i , j

^ i ux̂u j &s i j ,

~18!

where s i j [u i &^ j u and Ei is the energy of stateu i & in the
absence of the periodic force. Using the notationV i j

[l^ i ux̂u j &5l^ j ux̂u i & for the coupling constants, the conne
tion with the formalism developed previously should now
evident.

FIG. 2. Energy diagram of the lowest-lying eigenstates o
quartic double-well potential withD54. The splittings of the dou-
blets have been exaggerated for clarity.
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Note that, sincex̂ is an odd operator and the parity of th
quartic-oscillator eigenstateu i & is (21)i 21 ~with i
51,2,3, . . . ), transitions betweenu i &→u j & are allowed only
if ( i 2 j ) is odd.

For a sufficiently weak driving fieldl, any coupling con-
stantV i j will be much smaller thanv and the system will
evolve in a weak-coupling regime where all of the allow
transitions are weak. Conversely, for a sufficiently inten
driving field we would haveV i j @v for any i , j and the
system would evolve in a nonperturbative strong-coupl
regime where all the allowed transitions are strong. Ho
ever, as mentioned in the Introduction, in between these
limiting cases there exists an interesting nonperturba
strong-coupling regime in which the intradoublet transitio
become strong, while the corresponding interdoublet tra
tions remain weak. This is so due to the fact that, in th

kinds of systems, the dipole matrix elementsm i j ;^ i ux̂u j &
between states within a given doublet turn out to be mu
larger than the dipole matrix elements connecting states ly
in different doublets. On the other hand, under the ab
conditions, since interdoublet transitions are weak, contri
tions coming from off-resonant doublets will be negligibl
so that one expects the quartic oscillator to behave, to a g
approximation, as an effective four-level system. Note,
nally, that the nonperturbative regime in which we are int
ested lies within the range of applicability of the analy
formalism of Sec. II@see below Eq.~11!#.

We have solved numerically the time-dependent Sch¨-
dinger equation corresponding to Hamiltonian~18! by ex-
panding its solution in the basis set of eigenstates of
quartic oscillator, and have considered as many states in
truncated basis sets so as to guarantee well-converge
sults. Specifically, for the physical parameters conside
above, the 20 lowest-lying levels of the quartic oscillat
have been included, which are more than enough to gua
tee convergence. As we shall see, under the above co
tions, the dynamical evolution of the system can be
scribed, to a good approximation, by a four-level model.

In what follows we shall denote the two states of t
upper doublet asu3& andu4&, in accordance with the notatio
used in the four-level analytical model developed in the p
ceding section. Figure 3 shows the time evolution of t
populationsu^ i uc(t)&u2 of the bare statesu i & ( i 51,2,3,4) for
a system prepared int50 in the ground state. The curve
plotted correspond to the numerical results obtained by s
ing the Schro¨dinger equation with Hamiltonian~17!. In Fig.
4, we show the corresponding theoretical prediction,
tained from the analytic general solutionuc(t)& given by Eq.
~15!. It is important to note that the numerical results, unli
the analytical ones, include the contribution from all the e
ergy levels ~and not only the contribution from the mos
relevant four levels!. In fact, the slight discrepancy betwee
Figs. 3 and 4 is due entirely to this circumstance, as dem
strated by the fact that both analytical and numerical res
become indistinguishable when the numerical problem
also restricted to the four most relevant levels.

Figures 3 and 4 show that under the action of the stro
external field all the bare states become highly popula

a

3-5
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and their time evolution couples in such a way that the po
lation dynamics turns out to be quite different from t
simple Rabi oscillations occurring in the weak-field regim
In contrast, as Fig. 5 reflects, the populations of the ren
malized statesu i 8(t)& evolve in time exhibiting the usua
Rabi oscillations of the weak-field regime. Solid lines in th
figure correspond to exact numerical results, whereas da
lines correspond to the analytical results obtained from E
~14a!–~14d!. As before, the small difference between analy
cal and numerical results originates from corrections to
four-level approximation. Indeed, for the high field intens
considered above, the contribution of the second and fo
doublets to the dynamical evolution of the system, althou
small, it is not completely negligible. In fact, by monitorin
the different numerical populations it can be seen that a sm
proportion of the populations of the first and third doublets
rapidly transferred to their corresponding adjacent doubl
giving rise to the rapid oscillations that appear superimpo
to the usual Rabi oscillations in Fig. 5. When the numeri
problem is restricted to the four most relevant levels t
population transfer vanishes and, as already mentioned,
analytical and numerical results become indistinguisha
Since the contribution of levelu i & to the dynamical evolution
of level u j & is proportional toV i j /d i j ~whereV i j is the field-

FIG. 3. Dimensionless time evolution of the populations of t
bare statesu i & for a system initially prepared in the ground state
02250
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ed
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th
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s
s,
d
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s
th

e.

dependent coupling constant betweenu i & and u j &, andd i j is
the detuning of the corresponding transition@41#!, one ex-
pects a better agreement between analytical and nume
results for smaller field intensities. This is indeed the case

FIG. 4. Theoretical prediction corresponding to Fig. 3.

FIG. 5. Dimensionless time evolution of the populations of t
renormalized statesu i 8(t)& for a system initially prepared in the
ground state. Solid lines are exact numerical results and da
lines are the analytical results.
3-6



p
n
el
n

the

ns,
-
the

of
in-

lass
e-
tate
ime
or-
time
bi
s.
non-
a

s in
mil-
ba-
k-

eld
ble
abi

, so
ults
per-

n-
.

m
d

WEAK-COUPLING-LIKE TIME EVOLUTION OF DRIVEN . . . PHYSICAL REVIEW A68, 022503 ~2003!
can be appreciated from Fig. 6. This figure shows the po
lation dynamics of the renormalized states for an exter
field of the same frequency as before but a smaller fi
intensity, which now satisfies the strong-coupling conditio

FIG. 6. Same curves as in Fig. 5 for an external field of the sa
frequency as before, but having now an intensity satisfying con
tions ~a! V12/v50.75 and~b! V12/v50.5.
.

o

or

02250
u-
al
d
s

V12/v50.75@Fig. 6~a!# andV12/v50.5 @Fig. 6~b!#. As ex-
pected, as the intensity of the external field decreases
four-level approximation becomes more and more exact.

Figures 5 and 6 show that, for the above initial conditio
statesu28(t)& andu38(t)& remain unpopulated, while the sys
tem population undergoes Rabi oscillations between
renormalized statesu18(t)& and u48(t)&, and this occurs in
both weak- and strong-field regimes.

IV. CONCLUSION

In the nonperturbative regime, the dynamical behavior
driven quantum systems becomes, in general, rather
volved. In this paper, we have considered an important c
of driven four-level systems which are relevant in the d
scription of numerous processes in molecular and solid-s
systems, and we have shown that their nonperturbative t
evolution, when analyzed in terms of a natural basis of ren
malized states, essentially reduces to the corresponding
evolution in the weak-field regime, exhibiting simple Ra
oscillations between the different relevant quantum state

Such a renormalized basis enables one to absorb the
perturbative effects induced by the strong driving field into
redefinition of the relevant energies and Rabi frequencie
such a way that the system evolves obeying the same Ha
tonian in perturbative and nonperturbative regimes. This
sis thus provides a unified description valid in both wea
and strong-coupling regimes. In particular, in the weak-fi
regime, the renormalized basis becomes indistinguisha
from the original one and the renormalized energies and R
frequencies approach their corresponding bare values
that, in this regime, our formulation leads to the same res
as the usual RWA, and thus can be considered as a non
turbative generalization of the latter.
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@23# M. Dörr, C.J. Joachain, R.M. Potvliege, and S. Vucic, Ph

Rev. A 49, 4852 ~1994!; M. Terao-Dunseath and K.M
Dunseath, J. Phys. B35, 125 ~2002!.

@24# R. Gebarowski, P.G. Burke, K.T. Taylor, M. Do¨rr, M. Bensaid,
and C.J. Joachain, J. Phys. B30, 1837~1997!.

@25# S. Yoshida, C.O. Reinhold, P. Kristo¨fel, J. Burgdo¨rfer, S.
Watanabe, and F.B. Dunning, Phys. Rev. A59, R4121~1999!.

@26# W.R. Salzman, Phys. Rev. A10, 461 ~1974!.
@27# S.I. Chu and W.P. Reinhardt, Phys. Rev. Lett.39, 1195~1977!.
@28# S.C. Leasure, K.F. Milfeld, and R.E. Wyatt, J. Chem. Phys.74,

6197 ~1981!.
@29# R.M. Potvliege and R. Shakeshaft, inAtoms in Intense Lase

Fields, edited by M. Gravila~Academic, New York, 1992!,
p. 373.
02250
,

.
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