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Weak-coupling-like time evolution of driven four-level systems in the strong-coupling regime
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It is shown analytically that there exists a natural basis in terms of which the nonperturbative time evolution
of an important class of driven four-level systems in the strong-coupling regime decouples and essentially
reduces to the corresponding time evolution in the weak-field regime, exhibiting simple Rabi oscillations
between the different relevant quantum states. The predictions of the model are corroborated by an exact
numerical calculation.
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[. INTRODUCTION In this work we are interested in an important class of
driven four-level systems. Specifically, we consider a four-
The dynamical behavior of quantum systems driven bylevel system consisting of two doubletsee Fig. 1 This
external time-dependent fields has attracted considerable igystem has been previously studied in the context of coherent
terest in recent years due, in part, to the great variety opopulation transfef31] and tunneling dynamici20]. In the
phenomena that have been theoretically predicted and egresent work, we will show that there exists a natural basis in
perimentally observed when the system conditions are corferms of which the nonperturbative time evolution of the
veniently chosefil—3]. For instance, in the field of quantum System in the strong-coupling regime decouples and essen-
optics the quantum-interference effects induced by the cohefially reduces to the corresponding time evolution in the
ent external fields can lead to phenomena such as coherefigak-field regime.
population trapping4] (even in the nonperturbative regime ~ The splittings of the two lower state$l},|2)) and the
[5]), electromagnetically induced transparefi6y, or lasing  two upper states|8),|4)) will be denoted as\y and Ag,
without inversion[7]. In atomic systems, an external laser respectively. These splittings are much smaller than the sepa-
field can induce interesting processes such as harmonic geration A between the doublets. Such a level configuration is
eration[8] and multiphoton excitation and ionizati¢f]. commonly encountered in quantum double-well potentials,
The theoretical treatment of a quantum system exposed tohich in turn are relevant in the description of numerous
a strong time-dependent field requires specific nonperturbgrocesses in molecular and solid-state systems. For instance,
tive methods. The first comprehensive theoretical study othis model can describe the tunneling dynamics of the inver-
the effects of a strong oscillating field on a two-level quan-sion mode of the ammonia molecyl,32], intermolecular
tum system was carried out by Autler and Towh&§], who  proton transfer processg33], or the effect of a driving laser
using Floquet's theorerill] derived a solution in terms of field on the tunneling dynamics of low-lying electrons in
infinite continued fractions to investigate the effect of a rf
field on theJ=2—1 I-type doublet microwave absorption N 4
lines of molecules of gaseous OCS, obtaining good agree-
ment with experimental results. In another important paper, g)b
|
3

Shirley[12] also used the Floquet theorem to develop a gen-
eral formalism for treating periodically driven quantum sys-
tems. Using this formalism, which replaces the solution of ry
the time-dependent Schitimger equation with the solution of
a time-independent Schiimger equation represented by an
infinite matrix, he obtained closed expressions for time-
averaged resonance transition probabilities of a strongly
driven two-level system. More recently, a variety of ap-
proaches have been proposed to deal analytically with %3 Q ®
strongly driven two-level systenjd3—-19. Three- and four-
level systems driven by intense laser fields have also been
treated analytically5,20].

In the numerical description of realistic multilevel atoms
and molecules in intense laser fields, the Floquet theory and, +
more recently, th&k-matrix Floquet approacf21] have also ﬂ 2

A

proved to be particularly useful. These formalisms have been Q12

used in studies of atomic spectroscd@2], laser-assisted v 1
electron-atom scatterin@3], harmonic generatiof24], pe-

riodically kicked Rydberg atom5], and multiphoton exci- FIG. 1. Energy diagram and coupling constants of the four-level
tation and ionization of atoms and molecu|@6—30. system considered in the present work.
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quantum semiconductor heterostructurés,35. Our approach is not directly based on the Floquet theory,
The external periodic fiel@bf amplitudeE and frequency rather it relies on a suitable time-dependent unitary transfor-

o) will induce transitions between statefl)«|2), mation which allows thdintradouble} strong contributions

|3)«|4), |1)«|4), and|2)«|3), with corresponding cou- to be conveniently absorbed into renormalized physical pa-

pling constants(Qi,, O34, Q44, and Q,3, where () rameters. However, a connection can be established between
=E wj; and w;; is the dipole matrix element between statesthese two approaches. Floquet states and quasienergies,
liY<]j). The Hamiltonian of the system reads which are, respectively, the eigenstates and eigenvalues of

the Hermitian operatorH{—id/dt), become in the time-

4 independent case indistinguishable from the usual stationary
H =2 Eioji—Q,coq wt) (oot 029) states and energies. Thus, if one performs, as we shall do, a
=1 unitary transformatiorJ (t) to a rotating frame in which the
— 03,C08 wt) (034t T43) transformed Hamiltonian becomes, to a good approximation,
time-independent, then finding the Floquet states reduces to
—Qucog wt) (o4t 049) the straightforward task of diagonalizing the rotated Hamil-

tonian and transforming back to the original frame by apply-
ing U™ (t). As we shall see later on, the natural basis which
provides a unified description of the weak- and strong-
[N oo coupling regimes is nothing but the basis of Floquet states
of state[i) in the absence of the periodic force, and we take;sqciated with a zeroth-order Hamiltonian obtained from

=1 throughout the paper. the original Hamiltoniar(1) by decoupling the two doublets
We shall assume that, as is usually the case, the dipolg g ") by Ping ’

matrix elementgu;; between states lying within a given dou- ©., by taking(lys, Q25=0.

blet are much larger than the corresponding dipole matrix

elements connecting states lying in different doublets. Under Il. ANALYTIC MODEL

these circumstances, the states within a doublet are much

more strongly coupled by the external field than those Iyingf

in different doublets, i.eQ 5,035 Q 14, Qpg. Ifthe driving 0"

field is quasiresonant with the allowed transitions between

the lower and upper doubletsw&A) and weak enough so p( t
U(t)=exp i J

—y3c08 wt) (o3t 030, (1

whereoj;=|i)(j| is the transition operatoE; is the energy

We start by performing the time-dependent unitary trans-
mation

4

1
> E(El_" Eo) o+ o(o3st 044)

that any coupling constant;; is much smaller than fre-
o|i=1

guency w (weak-coupling regime the contribution of the
far-off-resonant transitionl)«[2) and|3)«[4) turns out —Q1,C08 w0t ) (0104 057

to be negligible. Under these conditions one can invoke the

rotating wave approximatio(RWA) and the dynamical evo-

lution of the system becomes governed by a Hamiltonian —Qggcoqdwt’) (o34t 043)}“')- ()
which, in the rotating frame, takes the simple for{

=H1,+Hj; with

This transformation, which in particular translates the zero of
[ energy to the pointE,+E,)/2, enables us to absorb the
H1/=Ei0111+ (E4— ©) 04— — (014F 049), (20 most rapidly oscillating terms of Hamiltonigil) and leads,
after some lengthy algebra, to the following rotated Hamil-

I . . tonian:
and a similar expression fdt ;; replacing +-2 and 4- 3. onian

Thus, in the weak-field regime, the time evolution consists of

usual Rabi oscillations betweét)—|4) and|2)—|3). As  H'=(A¢/2){cog2¢’(1)](02— 1) +isi2¢’(1)]

the strength of the external field increases, the contribution " Y

of the strong nonresonant transitigis < |2) and|3)«|4) X (o2~ 012} +(A0/2){c0§ 28" (1) (044~ 0733)
becomes increasingly important so that, eventually, the sys- 1 siy 26" (t)](043— 0730)} + (A — ) (T35t 0742)

tem enters an interesting regime in which the intradoublet

transitions become strong while the corresponding interdou- 1 it

blet transitions remain weak. This is a nonperturbative ({1t Qegcogwt){e™ " (cod ¢ ()](0ogt 014)
strong-coupling regime where the RWA is no longer valid

and one has to deal with two weak and two strong transi- ~ —iSiM¢_(t)](o131 024))+H.C}

tions. Under these circumstances, all the states become 1

coupled and the dynamical evolution becomes, in general, - ((,,—0,,)coqwt){e '(cog ¢ (t)](o23— 014)
rather involved. As we will show, there exists, however, a 2

natural basis in terms of which the time evolution of the
system is essentially the same in both the perturbative and
nonperturbative regimes. Thus, this basis provides a unified
description of the weak- and strong-coupling regimes. with

—isin¢ (1)](o13—024))+H.C}, (4
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@' () =(Qp/w)sin(wt), (5a)
¢"(1)=(Qg4/ w)sin(wt), (5b)
¢()="() = $"(1). (50)

Next, we express the time-dependent coefficientsl bfas a
series of Bessel functionk, by using expansion36]

PHYSICAL REVIEW A68, 022503 (2003

+ o

coigsin(wt>]=30<§>+2n§l Jan({)cog2nwt), (63

+ oo

sin ¢ sin(wt)]= 2@0 Jons1(O)siN(2n+1)wt]. (6b)

This enables us to write Hamiltonidd) as a sum of a domi-
nant constant contributiorH) and an oscillating time-
dependent paiitl;(t), with

1 1 1 1
H6:§A6R(022_ 010+ 5 AFN(0 44— 039 + (A— ) (035+ T4a) — 5 QT 14+ 047) — 5953(023+ 032, (7)

2

+ oo + oo

2

Hi(t):A(’)nZl Jon(¢")cog2nwt) (05— (711)+iA6nZo Jon+1(L)siN(2n+ 1) wt](o2— 015)

+ o

+ o0

+Agn§1 Jon(L")cog 2nwt) (0 44— 033>+iA6n§O Jons1({)sIN(2n+ 1) wt](045— 0734)

1 1
- 5(923+914)[Xc(§—)(023+ 014) —ix{-)(o13+ 024 +H.C]— 5(923_914)[Xc(§+)(023_ T14)

—ixd ) (o13— 020 +H.C,

wherel’ =20,/ w, {"=2Qg/w, and{.=3({'+{"). The

renormalized splittingsAy®, AgR, and Rabi frequencies

OR,08 are field-dependent quantities defined AgR
=A030(2Q 15/ w), ALR=AL10(2Q54/0), QF=0Q%, and
Q%=0R with

R {914+923 (912_934)
Q+=w 1
- Q15— Q3 @
Q14— Q03 [Q12+ Qs
i_Q +Q 1 y (9)
12 34 w

and the coefficientgy({) and x4 ¢) are defined by

1 . 4
X £) =57 Jo(£) +e (D)}

+ 2 {1+ (1= 5py)e” Iy £ cog2nat),

(108
xs<§>=<1+e—2‘wt>n§0 Jons2(O)siM(2n+1) wt],
(10b)

where é,,; is the Kronecker delta.

®

system becomes negligible and can be safely neglected under
rather general conditions. To see this, we write the evolution
operator associated with' (t) =Hg+H;(t) as the perturba-

tive expansion

g/ t R St
U’(t,O)ze'Hot(l—if dt’eHot Hy(t")e Mot 4. ..
0
1D

It can be easily seen that the integral on the right-hand side
of Eq. (11) is a sum of terms of the orders &f)/w, Ag/w,
Q4 w, andQ o3/ w. Thus, for a driving field quasiresonant
with the transitions between the lower and upper doublets
(o~A>A(,Af) and weak enough so that the Rabi frequen-
cies of the weak transitions(X;4,{,3) remain small com-
pared tow, the contribution ofH;(t) can be legitimately
neglected. This approximation is applicable regardless of the
value of the coupling constanf$,, and 5, and, therefore,

is valid in both the perturbative and nonperturbative regimes.
In particular, in the weak-field regime it leads to the same
results as the usual RWA and, consequently, can be consid-
ered as a nonperturbative generalization of the latter. Under
the above conditions, the dynamical evolution becomes gov-
erned by HamiltoniarH; which, by defining renormalized
energiesER=— A(R2, ER=AL%2, ER=A—A{R/2, andER
=A+AgR2, takes the same form as the weak-field Hamil-

The important point is that the contribution of the oscil- tonian previously considered. Specifically, one obtaitls
lating HamiltonianH(t) to the dynamical evolution of the =Hj,+H; with
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QlR4 and from this general solution one immediately sees that the
Hi,= E!fallJr(E?—w)aM—T(alﬁ 0g4), (12 probability amplitudes associated with the field-dependent
S T . . )
states|i’(t))=U"(t)|i) are precisely those given in Egs.
and a similar expression fdi}, replacing 12 and 4-3. (14a—(14d. It is therefore clear that the renormalized

The Schidinger equation associated with’ can be now li’(t)) states constitute the natural basis to analyze the time
readily solved analytically to obtain the nonperturbative gen—.eVOIUtIon of'the system. In fact, when the system Qynam|cs
eral solution in the rotating frame is analyzed in terms of such states the nonperturbative effects

induced by the strong driving field can be absorbed into a

4 redefinition of the relevant energies and Rabi frequencies in

[ (1)) = E c/ (t)]i), (13)  such a way that the system evolves obeying the same Hamil-
=1 tonian in both the perturbative and nonperturbative regimes.

with probability amplitudes:! (t) given by In terms of the original basis, stat¢fi’(t))} take the

form
(_IR i ’ — 2 P ’
ci(t)=[ci(0)cos(#t +—I—R[Ci(0)5?4 [17(t))=cosg¢’(t)|1)+ising’(t)]2), (169
14 |2/ (t))=i sing’ (t)|1)+cose’ (t)]2), (160
R . @4 _isR R : ..
+cy(0)Qf]sin —-t| re 1(01/2FEDL (149 |3"(t))=e"'“[cose"(1)|3) +i sing"(1)|4)], (160

|47 (t))=e"“'[i sing"(1)|3)+cos”(1)|4)]. (160

— '
' ' 23 b
cy(t)= [ 02(0)005( Tt) +Qﬁ[cz(0)5§3 These states constitute a basis of the extended Hilbert space
23 of t-periodic state vectol87]. In fact, as already mentioned,

R they are the Floquet states associated with the zeroth-order
+Cé(O)Q§3]Sin( _Z?’t) efi(6§g2+E§)t, (14h  Hamiltonian obtained from the original Hamiltonidf) by
2 decoupling the two doublets, i.e., by takid;,, Q,5—0.

This follows from the fact that, in such a case, the stflie$
0f, i . become the eigenstates of the rotated HamiltomiarH 1,
cs(t)=1 c3(0)co 5t —==[c3(0) 55 +Hjs [see Eq(12) and below.
Note that in the weak-field regime one has(t),¢"(t)
<1 for anyt and as a consequen{ié(t))—|i), so that the
Qi(5542-ES+a)t renormalized basis becomes indistinguishable from the origi-
nal one. Similarly, taking into account thdg(x)—1 and
J1(X)/x—1/2 asx—0, it follows that in such a regime the
(149 . : X . .
renormalized energies and Rabi frequencies approach their

—cg(om;g]sin( 723t)

= ) corresponding bare values, so that, in the weak-field regime,
/ , 14 : / R the above formulation simply reduces to the usual one. In the
t)= 0 —t = 0)6 . ; ; ) .
Ca(1) {C“( )COS( 2 ) QlR4[C4( ) 014 strong-field regime, however, the time evolution of the dif-

ferent bare states becomes strongly coupled by the driving
R

e 514 (R ER field and, as a consequence, it can be rather involved and
—¢1(0)Qsin Tt (P12 Egtolt very different from that occurring in the weak-field regime.
In contrast, the time evolution of the renormalized states re-

(1400  mains always as simple as in the weak-field regime, consist-
ing of Rabi oscillations betweenl’(t))—|4’(t)) and

where we have defined field-dependent renormalized detumz’(t)>_>|3’(t))_
ings 6%,=EX—ER—w and 65=E§—ER— w, and renormal-
ized generalized Rabi frequencied},=\/(Q5)%+(s%)? IIl. NUMERICAL RESULTS
and 033= V(039 %+(859°. The interesting point is that verify the predictions of the analytic model above,
while the system dynamics in the strong-field regime is inyay \ve perform an exact numerical calculation. We consider
general rather complicated, when viewed from the rotating, q,antum particle in a quartic double-well potential driven
frame it becomes essentially the same as that of the wealb-y an external periodic field of frequenay (see Fig. 2

field regime. The same result holds true in the original nonwj, e this potential approaches an infinite value at large dis-
rotating frame by the proper choice of the relevant basis;,casc— + oo it only admits bound eigenstatés]. Con-

Indeed, by transforming back one obtains sequently, there is no continuum spectrum and such a model
is only adequate for describing physical systems at energies

4
|¢(t)>=U+(t)|¢//’(t)>=2 ¢/ (HU*(B)]i), (15) well pelow the co.ntmuu.m thre_shold. .
i=1 Using convenient dimensionless variables, the corre-
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quartic-oscillator eigenstate|i) is (—1)'"! (with i
=1,2,3...), transitions betweefi)—|j) are allowed only
/ N\ ] s
if (i—]j) is odd.
\ I For a sufficiently weak driving field, any coupling con-
‘ 7 / ' stant(};; will be much smaller tharmw and the system will
A W
|\ ]

I Note that, since is an odd operator and the parity of the
10

evolve in a weak-coupling regime where all of the allowed

transitions are weak. Conversely, for a sufficiently intense
5 / \ / driving field we would have();;>w for anyi,j and the
4 system would evolve in a nonperturbative strong-coupling
regime where all the allowed transitions are strong. How-
ever, as mentioned in the Introduction, in between these two
limiting cases there exists an interesting nonperturbative
\1/ \/ strong-coupling regime in which the intradoublet transitions
become strong, while the corresponding interdoublet transi-

. . ) tions remain weak. This is so due to the fact that, in these
FIG. 2. Energy diagram of the lowest-lying eigenstates of a

quartic double-well potential with =4. The splittings of the dou- Kinds of systems, the dipole matrix elementg ~(i[x|j)

o
~_
e
L—]
—

blets have been exaggerated for C|arity_ betWeen states W|th|n a given doublet turn out to be mUCh
larger than the dipole matrix elements connecting states lying
sponding Hamiltonian can be cast in the fofa9] in different doublets. On the other hand, under the above
conditions, since interdoublet transitions are weak, contribu-

Ay R g tions coming from off-resonant doublets will be negligible,

p° X X R ) )

H= —— 2 + = _)\xcost. (17)  so that one expects the quartic oscillator to behave, to a good

2 4 64D approximation, as an effective four-level system. Note, fi-

nally, that the nonperturbative regime in which we are inter-

The dimensionless paramet®r determines the barrier ested lies within the range of applicability of the analytic
height and corresponds, approximately, to the number oformalism of Sec. I[see below Eq(11)].
doublets below the top of the barrier. In the present study, we We have solved numerically the time-dependent Schro
take D=4. The frequency of the external field has beendinger equation corresponding to HamiltoniétB) by ex-
tuned to the transitions between the first and third doubletgpanding its solution in the basis set of eigenstates of the
Specifically, we have taken=(Eg—E;), with E; being the  quartic oscillator, and have considered as many states in the
energy levels in the absence of the driving field. The dimeniruncated basis sets so as to guarantee well-converged re-
sionless field intensityk, on the other hand, has been chosensults. Specifically, for the physical parameters considered
to satisfy the strong-coupling conditio,,/w=1, where above, the 20 lowest-lying levels of the quartic oscillator
Q1= N (1]X|2) (see below: have been included, which are more than enough to guaran-

To establish a more clear connection with the formalism{€® convergence. As we shall see, under the above condi-
of the previous sections, it is convenient to rewrite Hamil-tions, the dynamical evolution of the system can be de-
tonian(17) in terms of a basis sdti)} of eigenstates of the SCribed, to a good approximation, by a four-level model.
quartic oscillator. We have obtained these eigenstates nu- In what follows we shall denote the two states of the
merically by diagonalization in another truncated basis se¥iPPer doublet ag3) and|4), in accordance with the notation
{|@n)} of harmonic-oscillator wave functions with a conve- Used in the four-level analytical model developed in the pre-
niently optimized frequency, following the procedure of Ref. ceding section. Figure 3 shows the time evolution of the
[40]. In this way, one gains a complete knowledge of thePOPulations((i|i(t))|? of the bare statel) (i=1,2,3,4) for
statedi}==,(¢n|i)|¢n) by determining the numerical coef- & System prepared it=0 in the ground state. The curves

ficients (@p]i). plotted correspond to the numerical results obtained by solv-
In terms of the quartic-oscillator eigenstates, HamiltoniariNd the Schrdinger equation with Hamiltonia(L7). In Fig.
(17) takes the form 4, we show the corresponding theoretical prediction, ob-

tained from the analytic general solutipm(t)) given by Eq.
(15). It is important to note that the numerical results, unlike
H=2, [iIXi|H[j)}{i|=2> Ejoi—A coswtY, (i|x|j)oi;, the analytical ones, include the contribution from all the en-
b ! b ergy levels(and not only the contribution from the most
(18) relevant four levels In fact, the slight discrepancy between
o . o Figs. 3 and 4 is due entirely to this circumstance, as demon-
where o;=i)(j| and E; is the energy of statéi) in the  strated by the fact that both analytical and numerical results
absence of the periodic force. Using the notatihy  become indistinguishable when the numerical problem is
=\(i|x|j)=N(j|x]i) for the coupling constants, the connec- also restricted to the four most relevant levels.
tion with the formalism developed previously should now be  Figures 3 and 4 show that under the action of the strong
evident. external field all the bare states become highly populated,
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1.0 1.0

”M y WWWWM V. WM M

0.5 0.5

M‘ Wtr rtm W

o MWMW WWM )Wt . rrtt rt WW‘W‘ Wlt tr . W

bare state$i) for a system initially prepared in the ground sta t

and their time evolution couples in such a way that the popu ?heepejr;ctient (g:]oofpltrr]tg g(c))nsétsa;ct) bdetvgléf);agd%])ar;di es

lation dynamics turns out to be au uite different from the pects a better agreement betwee n an alyt ical and numeri cal
simple Rabi oscillations occurring in the weak-field regi Me. sults for smaller field intensities. This is indeed the

In contrast, as Fig. 5 eflects the populato s of the ren o
malized statedi’(t)) e exhibiting the usual

Rabi oscillations of the weak feId reg ime. Solid lines in th is 109 iz
figure correspond to exact numerical results, whereas dashe h ™
lines correspond to the analytical results obtained from Eqsg.g{ & ,{,r‘r‘t““““t‘r;“t{j‘t‘:
(149—(140. As before, the small difference between analyti- W h
cal and numerical results originates from corrections to the0 6 o/
four-level approximation. Indeed, for the high field intensity ™ i
considered above, the contribution of the second and fourtt ‘
doublets to the dynamical evolution of the system, although0.4- “
small, it is not completely eglgble In fact, by monitoring Fi
the different numerical po p I atio can be seen thatasmaly , |/
proportion of the p p ulatio fth f st and third doublets is

rapidly transferred to their correspond ng adjacent doublets /rfj
giving rise to the rapid oscillations that appear superimpose®-0
to the usual Rabi oscillations in Fig. 5. When the numerical

200 400 600 800 1000

problem is t'tdtthf mt elevant levels this

populatio t nsfer vanishes and already mentioned, both F|G. 5. Dimensionles tm volution of the populations of the
analytical and numeri caI results become indistingui shable( ormalized sta t rg (t)) ystem initially prepared in the
Since the contribution of levél) to the dynamical evolution gro d state. S lid lines are exact numerical results and dashed
of level |j) is proportional ta);; /55 (where();; is the field-  lines are the analytica | sults.
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1.0 04,/ 0w=0.75[Fig. 6(a)] and{);,/ w=0.5[Fig. 6b)]. As ex-

pected, as the intensity of the external field decreases the

0.8 four-level approximation becomes more and more exact.
Figures 5 and 6 show that, for the above initial conditions,
stateg2’(t)) and|3’(t)) remain unpopulated, while the sys-
0.6 tem population undergoes Rabi oscillations between the
renormalized statefl’(t)) and|4’(t)), and this occurs in
0.4 both weak- and strong-field regimes.
0.2- IV. CONCLUSION
In the nonperturbative regime, the dynamical behavior of
0.0 N driven quantum systems becomes, in general, rather in-

0 ' 400 ' 800 1200 volved. In this paper, we have considered an important class
of driven four-level systems which are relevant in the de-
scription of numerous processes in molecular and solid-state
systems, and we have shown that their nonperturbative time
evolution, when analyzed in terms of a natural basis of renor-
malized states, essentially reduces to the corresponding time
evolution in the weak-field regime, exhibiting simple Rabi
oscillations between the different relevant quantum states.
Such a renormalized basis enables one to absorb the non-
perturbative effects induced by the strong driving field into a
redefinition of the relevant energies and Rabi frequencies in
such a way that the system evolves obeying the same Hamil-

0.6 1

0.4+

0.2 F \ tonian in perturbative and nonperturbative regimes. This ba-
\ /" \ ) sis thus provides a unified description valid in both weak-
0.0 : : : : : . : z and strong-coupling regimes. In particular, in the weak-field
0 500 1000 1500 2000 regime, the renormalized basis becomes indistinguishable
ot from the original one and the renormalized energies and Rabi

frequencies approach their corresponding bare values, so

FIG. 6. Same curves as in Fig. 5 for an extemnal field of the samdlat, in this regime, our formulation leads to the same results
frequency as before, but having now an intensity satisfying condiS the usual RWA, and thus can be considered as a nonper-
tions () Q1,/w="0.75 and(b) Q,,/w=0.5. turbative generalization of the latter.
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